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I. INTRODUCTION

Spectroscopic methods are important analytic tools in the study of various
microscopic systems such as nuclei, atoms, molecules, and crystal lattices. The
knowledge gained from the study of the various absorption, emission, or reemission
processes in microscopic systems is generally of interest either to the nuclear
physicist or to the solid-state physicist and the chemist, but seldom to both groups
simultaneously. Mdssbauer spectroscopy, however, makes very enriching contribu-
tions to both fields. This spectroscopy is based on observing recoilless emission and
resonance absorption of gamma rays by nuclei in solids. Resonance absorption of
gamma rays had been predicted since the beginning of this century; however,
experimental observation of this behavior was difficult due to the amount of energy
lost in the recoil of a nucleus emitting and/or absorbing a gamma ray. Below, we
briefly describe this problem.

From a classical point of view, a free atom of mass m, moving in the x direction
with a given velocity v, has a linear momentum of mv. If this free atom is in an excited
nuclear state and undergoes an energy transition to the corresponding ground state by
emitting a gamma ray, the momentum of the system must be conserved. To conserve
momentum, the momentum of the emitted gamma ray must be balanced by a change
in the velocity of the nucleus. This change in the velocity imparts to the nucleus an
energy associated with its recoil after emission. In most optical spectroscopic studies,
this loss of energy due to recoil is insignificant because it is much less than the
experimental spectral line width. However, in the study of the recoilless emission and
resonance absorption of gamma rays, the energy lost due to recoil is much greater
than the line width and thus becomes an important factor.

In pre-Mossbauer time, several experimental methods were utilized to either
broaden the line width or add to the energy of the gamma ray to make up for the loss in
recoil. One such method was the utilization of the Doppler effect by accelerating the
source toward the absorber in an attempt to compensate for the energy lost in recoil.
Temperature broadening and the use of recoil momentum imparted by a preceding
transition were also successfully employed in some cases in restoring energy lost due
to recoil. However, these techniques did not afford the opportunity to observe
hyperfine interactions due to the large broadening of the lines which were necessarily
incurred.

In 1958 Rudolph L. Mgssbauer discovered that recoilless emission and resonance
absorption of gamma rays could be observed if solid substances were used (28).
Without the need to compensate for energy loss due to recoil, line widths were greatly
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Fig. 6.1. Mossbauer periodic table.

reduced to the order of 10~7.eV. A high-resolution technique of this type enables one
to observe hyperfine interactions and thus study events affecting the nucleus and its
immediate environment.

This recoilless resonance phenomenon, which is referred to as the Mdssbauer
effect or nuclear gamma resonance (NGR), has been reported for over 100 nuclear
gamma ray transitions. The elements in which these transitions are observable are
shown in Fig. 6.1.

II. BASIC PRINCIPLES

NGR is the process whereby a gamma ray emitted during the transition of a
nucleus from an excited to a ground level excites an identical nucleus in the reverse
manner. This process is the basis of the Mossbauer effect. However, the unique
characteristic of the Mdssbauer effect is the ability to observe hyperfine interactions.
This can largely be attributed to emission and absorption of the gamma ray by the
nucleus without any loss of energy or line broadening due to recoil.

To fully appreciate the significance of recoilless emission, we will examine
gamma emission from a classical point of view. Consider a nucleus of mass m at rest
in an excited state. If during a transition from this excited state to the ground state, the
nucleus emits a photon of energy E,, then, the conservation of energy principle states
that the change in energy of the nucleus (E ) due to the transition must be equal to the
quantum of energy carried away by the photon plus the recoil kinetic energy (E,)
gained by the nucleus due to the emission process. Therefore, conservation of energy
requires that

E,~E,=Ey=E,+E, 6))

where E is the energy of the excited state and E , is the energy of the ground state. For
there to be appreciable resonance absorption, the energy of the transition must be
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approximately equal to the energy of the radiation emitted, i.e., E, = E,. Conserva-
tion of momentum requires that the momentum imparted to the nucleus (p) from the
transition be equal to the momentum of the gamma ray (p,), i.e.,
E
p=mv=p,= )
where v is the recoil velocity and c is the speed of light. The recoil energy can be
written as

E,=pmy= -1 (3)

The problem that results when the recoil energy is greater than the uncertainty in
the energy of the photon (I') is shown in Fig. 6.2. When E, = I  there is almost no
overlap of the emission and absorption energies, resulting in virtually no resonance.
Even for cases where 2E, = I, there is no appreciable overlap. Only when 3E, < T’
is there significant overlap. For most other spectroscopies, the recoil energy is usually
much smaller than the line width and resonance occurs frequently.

Now consider an atom bound inside a solid. If for low-energy nuclear gammarays,
the atom containing the nucleus of interest is bound strongly enough to its nearest
neighbors, there is a probability that the entire solid will recoil instead of the
individual atom. In this case, the mass in equation 3 must be replaced by the mass of
the bulk material. The larger mass of the solid results in an extremely small recoil
energy, virtually allowing for complete overlapping of the emission and absorption
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Fig. 6.2. Emission and absorption Lorentzian lines as a function of relative values of the recoil energy (E)
and the line width (T). (@) B, =T, (b) 2E,~T, and (c) 3E,~T.
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lines. Resonance can now occur easily with the natural line widths preserved, a very
important phenomenon since it allows for measurement of several types of hyperfine
interactions. These will be discussed in the following sections.

The general line shapes of absorption spectra in Mdssbauer spectroscopy are
Lorentzian “for infinitely thin” absorbers, i.e.,

Ir/2)?

UE) =l —pyr+ @12

4)

where I is the intensity of radiation for a particular gamma energy (E,) and E| is the
resonance energy giving an intensity of I,. The line width, I', (full width at half-
maximum) is generally twice the natural line width (I'y,w) of the source. Using the
uncertainty principle, one finds that

2 # In2

gk

(5

where ¢, is the half-life of the excited nuclear level.

A comparison of the shape of the Lorentzian with the more common Gaussian is
made in Fig. 6.3. As sample thickness is increased, the intensity of absorption
increases, the line width broadens, and the line shape goes from a Lorentzian to that of
a Gaussian. Before we define a “thin” or “thick” absorber, resonance cross sections
and Mossbauer fractions will be discussed.

The general laws of quantum mechanical scattering give the cross-section for
resonance, assuming a single line, no internal conversion and 100% zero phonon
absorption (no loss of recoil energy to the lattice) as

LORENTZIAN
/ GAUSSIAN

7

Fig. 6.3. Comparison of Lorentzian and Gaussian line shapes.
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7o = 2K gfg—i}; ®)
where X is the wavelength of the photon divided by 2, I, is the nuclear spin of the
excited level, and /, is the nuclear spin of the ground level. For most Mossbauer
transitions internal conversion (IC) must be considered. Internal conversion is the
deexcitation of an excited nucleus in which energy is carried away by the emission of
an atomic electron. Inclusion of internal conversion modifies equation 6, giving for
the resonance cross-section

QL+ 1
@l +1) (@a+1)

oo = 2mK? 7
where «, the internal conversion coefficient, is the ratio of the probability of internal
conversion to that of gamma emission.

To appreciate how large this cross section is, a comparison can be made between
the actual geometric cross section of the nucleus and the calculated cross section from
equation 7. For the case of the 14.4 keV transition in ’Fe, the ratio of the Mossbauer
resonance cross section to the nuclear geometric cross section is approximately
2:5:% 100,

This is the most dramatic of the Mossbauer transitions and is the main reason that
the 5’Fe transition is the one most often used in Mossbauer spectroscopy. This and
other more common Maossbauer transitions are listed in Table 6.1 with useful

TABLE 6.1
Parameters for Selected Mossbauer Transitions

Isotope Half life Internal Mossbauer ~ Mossbauer
abundance E, ti conversion  cross section line width

Isotope (%) (keV) 1.1, (ns) coefficient (10720 cm?) (mm/s)
5TFe 2.14 14.41 3/21/2 97.8 8.21 256 0.194
6INj 1.19 67.41 52 3/2 5.27 0.135 71.2 0.770
9Ru 12.72 89.36 3/25/2 20.5 1.54 8.0 0.149
119§ 8.58 23.87 3/21/2 17.8 5.12 140 0.647
121gp 57.25 37.15 712512 3.5 11.1 19.5 2.10
125Te 6.99 35.46  3/21/2 1.48 13.6 26.6 5.21
127 100 57.60  7/25/2 1.91 3.78 20.6 2.49
1291 a 21.77 52712 16.8 5.1 39.0 0.586
133es 100 81.00 5/27/2 6.31 1.72 10.3 0.535
I51gy 47.82 21.53 712512 9.7 28.6 23.8 1.31
153gy 52.18 103.18 3/25/2 3.9 1.78 5.46 0.68
155Gd 14.73 86.54 5/2 3/2 6.33 0.43 34 0.499
161py 18.88 25.66 5/25/2 28.2 2.9 95 0.378
166y 33.41 80.56 2 0 1.87 6.93 23.8 1.82
170yb 3.03 84.25 2 0 1.61 8.05 19.0 2.02
181Tq 99.99 6.24 9/217/2 6800 46 167 0.0064
193¢ 62.70 73.04 1/23/2 6.3 6.5 3.06 0.594
197Au 100 77.34 1/2 3/2 1.88 4.30 3.86 1.88
23Np b 59.54 5/2 5/2 68.3 1.12 31 0.0673

4 Radioactive, #;; = 1.57 X 107y.
b Radioactive, 11, = 2.14 X 10y.
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information such as nuclear spin states, gamma energies, nuclear lifetimes, line
widths, internal conversion coefficients, and cross sections.

The intensity of absorption can be related to two other parameters; these are the
sample thickness and the fraction of recoilless emissions. This latter parameter is
called the Mossbauer fraction or recoil-free fraction and will be discussed first.

For an emitting atom bound in a lattice, recoil energy can be given to the lattice in
the form of vibrational energy (phonons). When this occurs, the emitted gamma has
less energy than the transition energy due to the recoil energy gained by the emitting
atom. If no energy is given to vibrational excitations in the lattice, the whole lattice
recoils. Then the recoil energy is exceedingly small since the recoiling mass is very
large, being the mass of the whole crystal. The emitted gamma energy is therefore
essentially equal to the transition energy. This is called recoil-free or zero-phonon
absorption. When both of these processes take place, there is nuclear gamma
resonance.

A simplified description of the above processes can be found in the Einstein model
of a lattice, where there is a single vibrational frequency (vg) for the atoms. If the
recoil energy given by equation 3 is greater than Avg, there will not be zero-phonon
interactions as the atoms will absorb vibrational energy. However, if the recoil energy
is less than Avg, then the Mossbauer fraction, i.e., the fraction of recoilless emissions
is

f=ewo @®)
where 0y = fris is the Einstein temperature and k is the Boltzmann constant.
k
This factor can also be written as
-(x?)
f=ex ©)

where (x_2> is the thermal average of the mean square displacement of the emitting or
absorbing atom and 27X is the wavelength of the radiation. This factor was used in
earlier X-ray diffraction studies and known as the Debye-Waller factor.

From equation 8, it is evident that the larger the recoil (corresponding to higher
gamma energies), the smaller the Mossbauer fraction. Smaller atomic masses give
smaller Mossbauer fractions while stronger lattice forces support larger recoilless
fractions.

The Einstein model is oversimplified as it considers only one natural frequency for
the oscillators. The Debye model is an improved model where a distribution of
oscillator frequencies is incorporated into the calculation of the Mdssbauer fraction.
The distribution in the model is proportional to » where v goes from zero to a
maximum called the Debye frequency (vp). The final result for the Mossbauer
fraction is

=™ (10)

where
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and 0 = %. Plots of equation 10 are given for 3’Fe (14.4 keV), 12ISb (37.15 keV),

and 7Au (77.34 keV) in Fig. 6.4.

In addition to the effect of the gamma energy and lattice force discussed above,
note the additional effect of temperature in the Debye model. Increasing the tempera-
ture decreases the recoil-free fraction. Serious consideration must be given to the
operating temperature for the experiment. This will be discussed in more detail in the
experimental section.

1.0"
0.91 (a)
0.81
0.77
0.61

0.51

N

200 K
0.1 )‘\

RECOIL FREE FRACTION

100 200 300 400 500
TEMPERATURE (K)

09 (b)

RECOIL FREE FRACTION
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Fig. 6.4. Plots of the Mdssbauer fraction versus temperature for various Debye temperatures. (a) 197Au,
(b) 128b, and (c) ¥7Fe.
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Fig. 6.4. (Continued).

The effective thickness for an absorber (z,) is another very useful Mdssbauer
parameter. This parameter is directly related to the observed intensity of a Mdssbauer
absorption peak. The effective thickness is defined as

to=fa n, d, IA - oy (11)

where f, is the Mdssbauer fraction in the absorber, 7, the number of atoms per cubic
centimeter of the element, d, the thickness (cm) of the absorber, /A the isotopic
abundance, and o the resonance cross section. The above equation can be expressed
in more convenient terms by replacing n, and d, with the surface density o,
expressed in mg/cm? of the element of interest. Therefore,

_fa N IA - oy

1000 - A, (12)

tq

where N, is Avogadro’s number and A, is the atomic weight for the absorber.

Now a more general expression can be given for the line shape resulting from the
nuclear resonance for an absorber with uniform finite thickness as

ol LSRR (T[22
I(E)—"’[l f‘[l rxraL (E—Eo>2+<1’/2>2]

2
X exp [—t,, %2—)2] dE] (13)

where f is the Mossbauer fraction for the source (26).
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Fig. 6.5. 57Fe Mdssbauer spectrum of potassium ferrocyanide.

A Mossbauer spectrum of potassium ferrocyanide is shown in Fig. 6.5 in which
the data points are fitted to a Lorentzian. Note that the energy axis is expressed in
terms of velocity (mm/s). The reason for the choice of units has to do with the way in
which the energy is varied to obtain the spectrum. The observable line widths are
about one part in 102~ 10" of the actual energy of the photon. Such resolution far
exceeds any of the ordinary forms of spectroscopy and requires a unique method of
varying the energy, one method of which utilizes the first-order Doppler shift (6). The
absorber and source are moved relative to each other with velocity v resulting in a
Doppler energy shift for the gamma ray of

e=-E, (14)

Conversions from the velocity units (mm/s) to several corresponding energy units are
given in Table 6.1I for a number of the more common transitions. Positive velocity
refers to the case when the absorber and source are approaching each other. Methods
for obtaining the velocities are discussed in the Experimental Methods section.

Observing nuclear gamma resonance is interesting, but the major usefulness
comes as a result of the extremely high resolution that can be achieved. One of the
main areas that can be investigated are nuclear hyperfine interactions. These are
interactions between a property of the nucleus (e.g., magnetic dipole moment) and a
feature of the environment of the nucleus (e.g., magnetic field). There are three such
interactions that are extremely important to Mossbauer spectroscopy. These are the
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TABLE 6.1
Energy Factors for Mossbauer Transitions

Transition
energy 1 mm/s = 1 mm/s = 1 mm/s = 1mm/s =

Isotope (keV) (1078 eV) (MHz) (10~27 J/molecule) (mK)¢
5TFe 14.4 4.808 11.62 7.703 0.5579
6INj 67.4 22.48 54.37 36.02 2.609
99Ru 89.4 29.81 72.07 47.76 3.459
1195y 23.9 7.963 19.25 12.76 0.9240
121gp 372 12.39 29.96 19.85 1.438
125Te 35.5 11.83 28.60 18.95 1.373
1271 57.6 19.21 46.46 30.78 2.230
1291 27.8 9.263 22.40 14.84 1.075
133¢cs 81.0 27.02 65.33 43.29 3.135
I51Ey 21.5 7.182 17.37 11.51 0.8335
153gy 103.2 34.42 83.22 55.14 3.994
155Gd 86.5 28.87 69.80 46.25 3.350
161py 25.7 8.558 20.69 13.71 0.9931
166Er 80.6 26.87 64.97 43.05 3.118
170yh 84.2 28.10 67.95 45.03 3.261
181Ta 6.2 2.081 5.031 3.334 0.2415
1931 73.0 24.36 58.91 39.03 2.827
197Au 71.3 25.80 62.38 41.34 2.994
23Np 59.5 19.86 48.02 31.82 2.305

4 mK = milli Kelvin.

electric monopole interaction (E0), the magnetic dipole interaction (M1), and the
electric quadrupole interaction (E2). We discuss these hyperfine interactions in the
next section.

III. THE PRINCIPAL INTERACTIONS

A. ELECTRIC MONOPOLE (E0)—ISOMER SHIFT

An electrostatic interaction occurs between the nuclear charge of the nucleus and
the atomic electrons that penetrate the nucleus. At the nucleus, the electronic charge
density is given by —e | ¥(0) | 2 and is approximately constant over the nuclear
volume. Usually only the s electrons can penetrate the nucleus due to their wavefunc-
tion symmetries. The effect of this interaction is to raise the nuclear energy level
slightly as shown in Fig. 6.6. Approximating the nucleus as a uniform sphere of
radius R, one finds for this shift in energy

8E=—Ze2|‘If(0)|2R2 (15)

where Z is the nuclear charge. A net change in the energy of the transition (AE) will
occur depending on the shifts for both the excited (8E,) and ground (8E ) levels, i.e.,

AE =8E, — 8E, = —Ze2|‘l'(0)|2(R2 - R2) (16)
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Fig. 6.6. Energy level diagrams for identifying the isomer shift.

This change in the transition energy will occur in both the source (emission) and
the absorber (absorption). The difference between these in velocity units is called the
isomer shift (8) and can be measured as a shift in the absorption line as shown in
Fig. 6.5. The expression for the isomer shift in velocity units using equation 16
becomes

_ _ £
8 - [AEabsorber AEsource] Ey
27rZe c
g R:—RY) [| (0)| 2 absorber — | ¥(0)|2source]
Y
4mZe?cR? (AR
= TEY_— ("'E‘) [‘ ‘Ifa(O) ' 2 - I‘PS(O) | 2] (17)

where AR = R, — R,. The electron density terms in this equation are nonrelativistic;
however, a relativistic model calculation (36) indicates that the only modification of
equation 17 necessary is the addition of an overall factor S(Z). Therefore

5= %‘iﬂ 5(2) SR (w0 - [ 2,02 (18)
is the relativistic generalization of equation 17.

Equation 18 can be simply written as
& = aA| T (0)|? (19)

where a is called the isomer shift calibration constant and A | ¥(0)| 2is the difference
in electron densities at the nuclei in the two substances. Values for AR/R, S(Z), and «
are given in Table 6.111. It is evident from these equations that the isomer shift is a
function of the electron density at the nucleus. This electron density will be very
much dependent on electronic structure of the Mossbauer atom and the bonding
between this atom and its ligands. For « less than zero (e.g., 'Fe), if iron compound
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TABLE 6.111
Parameters for the Isomer Shift (34)

Relativistic

E, correction (109‘3 ad) AR/R
Isotope (keV) S(Z) (apmm/s)? (1079
STFe 14.41 1.294 —0.157 -5.6
6INj 67.41 1.343 —0.0085 —1.25
9Ru 89.36 1.927 +0.060 +5.4
119gp 23.87 2.306 +0.042 +0.79
1215p 37.15 2.381 —0.21 -5.8
125T¢ 35.46 2.438 +0.024 +0.62
1271 57.60 2.530 —0.081 -3.3
1291 27.77 2.530 +0.21 +4.2
133y 81.00 2.685 +0.0156 +0.84
I51gy 21.53 3.511 +0.34 +3.9
153gy 103.18 3.511 —0.40 -22
155Gd 86.54 3.678 —0.025 -1.12
161py 25.66 3.993 +0.115 +1.44
170yh 84.25 4.667 +0.0060 +0.22
18T 6.24 5.196 -3.1 -7.8
193] 73.04 6.213 +0.035 +0.95
197Au 77.34 6.840 +0.053 +1.46
2Np 59.54 13.580 —0.26 —4.1

¢ ay= Bohr radius.

A has a § greater than that of iron compound B, then the electron density at nucleus B
is greater than that at A.

Usually isomer shifts are given relative to the source used in the experiment or
relative to a standard reference material. To compare literature data it is necessary to
have all §’s relative to the same substance. Conversions relative to one material can be
obtained relative to another by using the evaluated data given in Table 6.IV. This table
also gives recommended standard reference materials. All § data are usually reported
relative to these materials.

B. MAGNETIC DIPOLE (M1)—MAGNETIC HYPERFINE SPLITTING

Energy levels in nuclei having spin quantum numbers (/) greater than zero will
have a nonzero magnetic dipole moment (). In the presence of a magnetic field (ﬁ),
there will be an interaction that results in the splitting of nuclear energy levels
removing degeneracies. The Hamiltonian describing this interaction is simply

-

H=-u-H (20)
The magnetic moment can be expressed as
B=gnBul (21

where gy is the nuclear Landé factor (sometimes called the nuclear g factor) and By is
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the nuclear magneton (8y = 5.051 X 10~ Joule/Tesla). Substituting equation 21
into equation 20 gives

M= _gNﬁNT' H (22)

The diagonalization of the first-order perturbation matrix results in the following
eigenvalues (E ;) for the Hamiltonian:

Ey(m) = _#Hmlll = —gnByHm, (23)

where m is the nuclear magnetic quantum number, having the (2/+1) values: —1,
—I+1, ... I1—1, +1. As an example, the resulting splitting and transitions for 5’Fe
are shown in Fig. 6.7. However, two of the transitions, m; = +3/2to m; = —1/2
and m; = —3/2 to m; = +1/2, are forbidden since the selection rule is Am; = 0,
+1. Spectra that result are often quite complex. In the spectrum for metallic iron,
shown in Fig. 6.8, the magnetic field is an internal field of 33 Tesla.

As for the isomer shift, the term that is of most interest is the environmental
parameter, in this case the magnetic field. This field can either exist internally or be
applied. There are three principal contributions to the internal magnetic field, each
being generated by unpaired electrons (45). Usually the dominant contribution is the
Fermi contact field (H,.) which results from a spin density (either spin up or spin
down) at the nucleus. These are the s-electrons that can be spin-polarized by the
electrons in the outer shells. The other two fields are the orbital field (H;), which
results from the orbital motion of the valence electrons, and the dipolar field (H p),

z
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Fig. 6.7. 57Fe Mossbauer spectrum of a-Fe.
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TABLE 6.1V

Isomer Shift Reference Scales,

Uncertainty in Last Digit(s) Given in Parenthesis

Transition Reference Absorber and source materials
Isotope (keV) material (isomer shift relative to reference material in mm/s)
5TFe 14.4 a-Fe Na,Fe(CN)sNO - 2H,0 Cr Stainless steel
(T=300 K) —0.2576(14) —0.146(3) —0.086(3)
NayFe(CN)g - 10H,0 K4Fe(CM)g - 3H,0 Rh
—0.0553(21) —0.042(3) +0.1209(22)
Pd Cu Pt
+0.1798(12) +0.2242(10) +0.3484(24)
a-Fe203
+0.365(3)
Na,Fe(CN)sNO - 2H,0 Cr Stainless steel NayFe(CN)g - 10H,0
(T=300 K) +0.111(3) +0.171(3) +0.2024(22)
K4Fe(CN)g - 3H,0 a-Fe Rh
+0.2152(24) +0.2576(14) +0.3786(24)
Pd Cu Pt
+0.4374(13) +0.4819(13) +0.606(3)
a-FCzO:;
+0.623(3)
9%Ru 89.4 Ru RuO, K4Ru(CN)g - 3H,0 Ru(Rh)
—0.249(8) —0.224(10) 0.000(4)
119gn 239 BaSnO3 Sn02 CaSnO3 MeZSan
(T=71 K) 0.000 0.000 +1.301(16)
Pd(Sn) Pd;Sn V(Sn)
+1.505(13) +1.571(14) +1.577(6)
Mg,Sn a-Sn B-Sn
+1.908(12) +1.998(15) +2.559(8)



SSy

lZle

125Te

1271

1291

149§ m

37.2

35:5

57.6

22.5

BaSnOj;
(T=300 K)

InSb

ZnTe

Cul

SmF3

SnTe
+3.446(15)

Sn02
0.000
Pd(Sn)
+1.507(13)
Mg,Sn
+1.905(12)
SnTe
+3.441(15)
B-Sn
—2.70(4)
Sn0O,
+8.51(2)
B-TeO4
—1.16(3)
Rh(Sb)
+0.05(10)
Te
+0.57(3)
Nal
—0.024(8)
ZnTe
+0.12(2)
Nal
—0.076(18)
ZnTe
+0.384(11)

Ssz
—0.90(8)

CaSnO3
0.000
V(Sn)

+1.624(14)
a-Sn
1.995(15)

Ni21502B6
+1.648(19)
CaSnO3
+8.53(3)
PbTe
+0.00(6)
Cu(Sb)
+0.08(3)
TCOZ
+0.78(4)

KI
—0.01(3)

KI
—0.062(14)
SnTe
+0.81(5)
Eu
—0.02(11)

Me,SnF,
+1.291(16)
Pd3;Sn
+1.579(7)
B-Sn
+2.555(8)

BaSnO;
+8.47(4)

Cu(l)
+0.01(2)

SnTe
+0.23(5)

Csl
+0.00(3)

Csl
+0.007(17)

Eu203
—0.01(6)
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TABLE 6.1V (Cont.)

Isomer Shift Reference Scales,
Uncertainty in Last Digit(s) Given in Parenthesis

Transition Reference Absorber and source materials
Isotope (keV) material (isomer shift relative to reference material in mm/s)
EuF; Sm,03 SmAl,
0.00(2) +0.04(3) +0.15(12)
S1gy 21.5 EuF; EuS EuF; - 2H,0 SmF; - 2H,0
—11.65(4) —0.046(9) —0.003(13)
SmF3 Sm203 EU203
+0.05(3) +0.85(4) +1.017(8)
153Ey 103.2 EuF; Eu,03 Smy03 EuS
—1.18(14) —0.94(14) +14.0(10)
155Gd 86.5 GdF, Pd(Eu) Gd Sm(Eu)
—0.684(9) —0.678(9) —0.53(4)
EuF, GdAl, SmAl;3(Eu)
—0.51(3) —0.234(13) —0.169(13)
GdAl; Sm;Sn,07(Eu) SmF3(Eu)
—0.159(12) —0.12(2) —0.02(4)
161py 25.6 DyF3 GdF5(Tb) Gd,05(Tb) Dy,03
(T=300 K) +0.12(14) +0.1(5) +0.62(6)
Gd(Tb) Dy
+2.25(5) +2.82(10)
170yp 84.3 YbAl, YbSO, YbBg Yb
—0.34(4) —0.202(16) 0.00(2)
TmB |, TmAl, YbAl;

0.00(2) +0.060(12) +0.09(2)



LSY

18174
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197A04
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6.2

73.0

71.3

59.5

Ta

Ir

NpAl,

Tm
+0.12(3)
Mo(W)
—22.56(8)
Pt(W)
+2.71(8)
Pt(Os)
—0.644(6)
V(Os)
+1.71(3)

Pt
+1.22(2)

Th(Am)
—8.9(3)

w
—0.835(3)

Os
+0.539(7)

Np02
—6.10(4)

Ta(W)
—0.074(4)

Nb(Os)
+1.0(2)

U0,
—5.17(6)
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1 1
Fig. 6.8. Energy level diagram and line spectrum due to the magnetic hyperfine interaction in 37Fe.
due to the coupling between the nucleus and outer electrons. Therefore, the total
internal field is

H=HC+HL+HD (24)

C. ELECTRIC QUADRUPOLE (E2)—QUADRUPOLE COUPLING CONSTANT

When the nuclear-spin quantum number is greater than § there is a nuclear
quadrupole moment (Q). This moment can interact with the electric field gradient
(EFG) to result in the splitting of nuclear energy levels. The EFGis (—=V V V), i.e.,

Vxx ny sz
EFG=VE=-VYVV=|V, V, V, (25)
Voo Vo Vi
where the components are given as
e OY
v 8x ,~6x j :

The above symmetric tensor can be diagonalized by the appropriate choice of axes.

The resulting tensor has three non-zero elements, which are the diagonal elements. ?
Only two of these diagonal elements are independent due to Laplace’s equation,

which states

Vet Vy+V,.=0

These two independent elements give rise to two experimentally observable parame-
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ters. One of these is the z component of the electric field gradient defined as

_ Vs
q= p (26a)

while the other, the asymmetry parameter, is

= —MV_ 4 (26b)
[24

where |V |=|V,|=|V.|. This constraint restricts 1 to lic between 0 and 1.
The Hamiltonian for the interaction between the nuclear quadrupole moment and
the EFG is

_e0q _
Ho = VTCTEmY (312 — 12+ n (13 + 12)/2] 27)

where / is the nuclear spin operator, /, the operator for the nuclear spin projected in
the z direction, and /. are shift operators. For cases of axial symmetry, i.e.,m = 0,
the energy eigenvalue equation is

e*Qq _
Eo= M~ 1)[3m% I+ 1] (28)

For the case where I = 3/2 (applicable to "Sn and 5’Fe) equation 27 becomes
Ey(my) = Qq [3 m} — —} [1 + n¥/3]2 (29)
This gives two levels:
Eo(=1/2) = —1/4e2Qq (1 + n?/3)12
E, (£3/2) = +1/4e?Qq (1 + n?/3)'2 (30)
The resulting energy-level diagram for this interaction is shown in Fig. 6.9. Instead

of a single absorption line there are two. The observed splitting of the single line into

I'll|—-3/2

L
Eo+ Y4e2Qq(1+n%) /2

Eo-Ya ezoq(1+92/3)1/2

1=% E=Eq

1=¥2 E=0 m =t 1

¢?Qq =0 e’Qq #0

Fig. 6.9. Energy level diagram identifying the quadrupole splitting (A).
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Fig. 6.10. 57Fe Mossbauer spectrum of sodium nitroprusside.

two lines (see Fig. 6.10) is called the quadrupole splitting (A) and from equation 30
A = 1/2e2Qq (1 + n?[3)'” (31

Oftenm = 0 and consequently the quadrupole splitting for a particular transition will
be dependent only on V.

When the nuclear spins are different from those of the common transitions in iron
and tin, a much more complicated situation arises. For example, '?!Sb has a ground
nuclear spin of 5/2 while the excited level is 7/2. If n = 0, there will be eight allowed
transitions resulting in a more complex spectrum. It is unfortunate that for 2'Sb the
eight absorption peaks overlap each other and none of the lines can be resolved. A
typical '2ISb Mossbauer spectrum is shown in Fig. 6.11. Because both the relative
positions and intensities are known, it is not too difficult with the use of a digital
computer to determine the quadrupole coupling. More details on this will be provided
in the sections on Experimental Methods, (Section IV) and Quadrupole Coupling
(Section VII).

IV. EXPERIMENTAL METHODS

A. SPECTROMETERS

A Mossbauer spectrum is a plot of intensity (of gamma rays) versus Doppler
velocity. While gamma rays are detected and counted by using normal nuclear-
counting instrumentation methods, velocity-modulation techniques are relatively
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Fig. 6.11. '2Sb Mossbauer spectrum of PhSb(Et,dtc),.

unique to Mdssbauer spectroscopy and are central to any Mossbauer spectrometer.
Many of the earlier spectrometers were mechanical devices in which the source or
absorber moved at a constant velocity relative to one another. With these devices, the
spectrum is obtained by counting for a specific period of time at one velocity,
recording the number of gammas counted, and then selecting another velocity, etc.
Such a procedure is obviously very time-consuming and requires much effort.
Programming techniques can be used to reduce some of this effort. However, current
spectrometers use electromechanical devices which sweep arange of velocities with a
frequency of the order of 10 Hz. This allows the complete range of velocities (i.e.,
energies) to be counted almost simultaneously, although a spectrum does not begin to
appear until after many scans.

The primary element of a Mossbauer spectrometer is an electromagnetic trans-
ducer, often referred to as the Kankeleit drive. This has one basic design consisting of
a drive coil, which is located in the field of a permanent cylindrical magnet, and a
velocity-monitoring coil, both of which are attached to a center rod. The coils can be
either specifically designed for the spectrometer or obtained from a commercially
produced loudspeaker. A cross-section diagram of a drive is shown in Fig. 6.12.

The rod is driven by a current running through the drive coil. The current can be
varied to produce several different periodic motions, shown in Fig. 6.13. The
triangle, which is the most common waveform, and the sawtooth, sometimes called
“flyback,” both give velocities which vary linearly in time. The triangular waveform
gives a true spectrum along with its mirror image. The sawtooth does not give a
mirror spectrum. The sinusoidal waveform is especially suited for large velocities and
fine precision.

A schematic block diagram of a typical Mdssbauer spectrometer is shown in
Fig. 6.14. It illustrates how the electromagnetic transducer, discussed above, is
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Fig. 6.12. Mossbauer drive motor (courtesy of Austin Science Associates).

related to the other major components of the spectrometer. Central to the electronic
part of a Mdssbauer spectrometer is a multichannel analyzer (MCA), an on-line
computer system, or a microprocessor which stores the collected data in the form of
the number of gammas counted at each velocity.

B. SOURCES

The usual sources are radioactive isotopes that first decay by electron capture or
alpha, beta, or gamma ray emission. These radioactive isotopes subsequently
undergo Mossbauer transitions. Simplified nuclear energy level diagrams illustrating
typical decays are giveniin Fig. 6.15 for four typical Mossbauer transitions. It is

i 2 A e
o g g s

VMAXI/\ Vmax |

t
Mo st TR ug I_*
mel \/ Vmin . L

Fig. 6.13. Periodic motions of a Mossbauer spectrometer (triangle, sawtooth, sinusoidal, and flyback).
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Fig. 6.14. Block diagram of a Mossbauer spectrometer.

desirable for the gamma ray to be emitted with zero recoil during the Mdssbauer
transition. From equations 8 and 10, it is apparent that the Mossbauer fraction, which
gives the probability for a recoilless emission, is significant provided that the energy
of the gamma is not too large. In fact, all the observable Mossbauer transitions have
gamma energies below 200 keV. See Table 6.1 for the energies of the more common
transitions.

The lifetimes of any excited nuclear level used in Mossbauer spectroscopy must
have natural line widths (see equation 5) that can be observed by the Doppler velocity-
scan method of varying the energy. Consequently these lifetimes are usually in the
range of 1-100 ns. If they are shorter, the line width will be too broad and, if longer,
the line width will normally be too narrow to be observed. It is important to select
source materials that give a large Mossbauer fraction (f;) and have single, narrow
lines. Table 6.V contains a list of such materials with f; values at those temperatures
normally used for the spectroscopy.

C. DETECTORS

Since Mssbauer gamma rays are quite low in energy, the detectors employed are
those that normally detect X-rays. Basically there are three different types of
detectors. These are the scintillation detectors, the proportional counters and the
semiconductor devices. Scintillation detectors are usually Nal(TI) crystals and are
excellent for the higher-energy Mossbauer transitions due to their counting efficiency.
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They are also relatively inexpensive, but have poor resolution. This makes them
inappropriate for many transitions. Proportional counters, also inexpensive, have
resolutions that are much improved over the scintillation detectors, but have poor
efficiency at the higher energies. The semiconductor detectors are usually Ge(Li) or
Si(Li). More recently intrinsic Ge detectors have been employed. The efficiency is
excellent for these devices at all gamma energies of interest and they have resolutions
that are even better than proportional detectors. An example of their improvement in
resolution can be seen in Fig. 6.16 where a comparison is made with results obtained
from a proportional detector. However, their cost ranges from $5,000 to $15,000. In
addition, they must be maintained at liquid nitrogen temperatures.

TABLE 6.V
Properties nf Mdssbauer Sources (37)

Transition Source
energy W2 Source temperature
Isotope (keV) (mm/s) material (K) I

5TFe 14.41 0.194 Cr 300 0.784
SS310 300 0.604
SS 300 0.678
Rh 300 0.784
4.2 0.875
Pd 300 0.660
77 0.863
4.2 0.813
Cu 300 0.708
4.2 0.910
Pt 300 0.724
77 0.890
4.2 0.851
CoO 300 0.735

6INj 67.41 0.770 Ni-Cr alloy 4.2
Ni-V alloy 4.2 0.162
9Ru 89.36 0.149 Ru(Rh) 4.2 0.140
1198n 23.87 0.646 SnO, 300 0.471
77 0.585
4.2 0.885
CaSnO3 300 0.574
BaSnOj; 300 0.623
Pd(Sn) 300 0.383
Pd;Sn 300 0.340
4.2 0.750
V(Sn) 300 0.460
77 0.780
Mg,Sn 300 0.280
77 0.770

a-Sn 71

B-Sn 300 0.046
77 0.446

4.2 0.716



TABLE 6.V (Cont.)
Properties of Mdssbauer Sources (37)

Transition Source
energy W, Source temperature
Isotope (keV) (mm/s) material (K) s
1215p 37:15 2.10 SnO, 300 0.212
71 0.320
BaSnO; 77 0.450
B-Sn 77 0.160
NiZISnng 300 0.070
71 0.290
125Te 35.46 5.209 B-TeO; 300 0.320
77 0.531
PbTe 300 <0.029
77 0.250
Cu(l) 77 0.143
4.2 0.400
Rh(Sb) 4.2-77
Cu(Sb) 300 <0.029
77 0.442
Y | 57.60 2.49 ZnTe 4.2 0.120
1291 27.77 0.586 ZnTe 77 0.232
151gy 21.53 1.31 SmF; 300 0.275
SmF3 - 2H,0 300
Sm,03 300 0.440
153Ey 103.2 0.68 Sm,0; 20 0.050
155Gd 86.55 0.499 Pd(Eu) 4.2 0.110
Sm(Eu) 4.2
Sm25n207 4.2
161Dy 26.66 0.378 Gdy03 300 0.230
GdF; 300
Gd(Tb) 300
166y 80.56 1.816 HoAl, 25-30
170yb 84.25 2.019 TmB; 4.2 0.340
TmAl, 4.2 0.180
Tm 4.2
18174 6.24 0.0064 Mo(W) 300
w 300
Ta(W) 300
Py(W) 300
193¢ 73.04 0.595 Pt(Os) 4.2
Os 4.2
Nb(Os) 4.2
V(Os) 4.2
197Au 71.35 1.882 Pt 77 0.069
4.2 0.272
2TNp 59.54 0.067 Th(Am) 4.2-71
VO, 4.2-77

@ Natural line width in units of mm/s.
466
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TABLE 6.VI
Effective Absorber Thickness Constant (40)

Transition ta Transition ts
Isotope (keV) (cm?/mg) Isotope (keV) (cm?/mg)
5TFe 14.4 0.578 155Gd 86.5 0.194
6INj 67.4 0.0836 161Dy 43.8 0.225
99Ru 89.4 0.0622 166Er 80.6 0.288
1198 23.9 0.609 169Tm 8.4 0.918
121gp 37.1 0.557 170yb 3.0 0.0204
125Te 35.5 0.0895 181T, 6.2 5.56
1271 57.6 0.975 182y 100.1 0.219
1297a 27.8 1.82 1931 73.0 0.0598
133¢cs 81.0 0.466 195p¢ 98.8 0.0637
149§m 22.5 0.0397 197 Au 71.3 0.118
I51gy 21.5 0.453 23INp? 59.5 0.778
153gy 83.4 0.200

@ Isotopic abundance assumed to be one.

D. ABSORBERS

Special care needs to be taken in preparing an absorber with particular attention
given to optimizing the thickness. A sample too thin will result in little observable
absorption while one too thick will absorb most of the gammas nonresonantly, thus
washing out the resonant absorption spectrum. In most other spectroscopies adjusting
the thickness by trial and error is usually the most efficient procedure. However, in
Mossbauer spectroscopy it often takes hours (and sometimes even days) to obtain a
spectrum. Therefore it is important, if at all possible, to prepare the sample correctly
on the first attempt. The thickness of the sample needed to give a good spectrum can
be determined by using equation 12. This expression can be simplified by defining an
“effective absorber thickness constant” (z,) as

_ No - IA - (o)
fe= 000 - A, (32)
Using equation 32 with equation 12 we find
a
S fa : te (33)

which is an expression for sample thickness in units of mg of the atom of interest per
cm?. Values for the constant 7, are given in Table 6. VI for the common transitions and
values for f, can be estimated using plots like those in Fig. 6.4. To use these plots one
must assume an approximate Debye temperature for the material. Usually organic
substances are 50— 150K, inorganic substances 100-300 K, and metals and alloys
200-300 K. The Debye temperature is related to the strength of the bonds between
the atom of interest and its neighbors. For selecting the sample thickness, a rough
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value of 6, will suffice. Using equation 33 and letting #, = 1, an appropriate sample
thickness can be determined. If a spectrum is expected to consist of more than a single
line, then one should use a larger value for 7, up to five, depending on the anticipated
complexity. Some values of sample thicknesses using 7, = 1 are listed in
Table 6. VII.

It is quite important to have a sample that is approximately uniform in thickness.
This is quite difficult to achieve when the sample needs to be as thin as indicated for
some cases in the table. The usual procedure is to mix the material with a filler
substance that is relatively transparent to the gamma ray. These substances should
have atoms of low atomic weights (low Z) and be nonreactive with the sample.
Examples are fine powders of boron nitride, sugar, polymethylmethacrylate and
glass.

The absorber is placed in a container also made of a low Z material. Common
materials include Plexiglass, beryllium, aluminum, and Teflon. If the absorber
material is a metal, then it can be rolled into a thin foil.

It is important to maximize the count rate by minimizing the source detector
distance. However, at some point minimizing can begin to add a serious error in the
velocity scale. This is often referred to as the “cosine effect” because the error in the
Doppler energy (AE) is

AE =YE, cos6 (34)
€

where 6 is the angle between the direction of the photon and the normal direction
between the source and the absorber. As a general rule, it is desirable that the ratio
between the detector-window radius and the source-detector distance be less (assum-
ing the source radius is equal to the window radius) than 0.1. Sometimes when a
particular source may be quite weak, closer distances are necessary to get any sort of
spectrum in a reasonable amount of time.

E. TEMPERATURE CONSIDERATIONS

An examination of the plots in Fig. 6.4 reveal the importance of temperature in
obtaining observable spectra. For most Mdssbauer transitions, it is necessary that the
experiment be done at low temperature, often down to 4.2 K, which can be achieved
using liquid helium. Some spectra can be obtained using liquid nitrogen for cooling
(77 K). Commercial Dewars readily available which are not already suitable can be
easily modified for Mdssbauer spectroscopy. The Dewars are constructed either from
stainless steel or glass, the latter being less expensive but more easily broken.

Many different absorber-source-detector geometries and configurations are possi-
ble. The most common has the absorber and the source at the same temperature inside
the cryostat, and the detector outside. Mylar windows (usually aluminum coated) are
most commonly used to minimize the nonresonant absorption of the gammas.

Often it is quite important to gather Mdssbauer data as a function of temperature.
These can be obtained using feedback heating devices that give temperatures from
4.2 K to well above room temperature. For higher temperatures, specially con-
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Calculated Values of Absorber Thickness (0°,) in mg/cm? of the Natural Isotopic Abundance (2)

TABLE 6.VII

S(0p = 100 K) S(0p = 150 K) S(6p = 200 K) S(0p = 250 K)
Transition 300 717 4.2 300 77 4.2 300 77 4.2 300 77 4.2

Isotope (keV)

57Fe 14.4 261 11 5 24 5.9 4.4 10.3 4.8 4.1 7 4.3 4
61N 67.4 40268 3281 18483 951 2341 454
9Ru 89.4 6635 1735 4604 776
1198 23.8 965 15 5.3 41 6.7 4.5 14 5 4.2 8.3 4.4 4
121gp 37.1 129 11 1447 19 7.3 105 9.5 6.1 31 7 5.4
125Te 35.5 546 61 100 43 455 55 37 156 41 33
1271 57.6 28 100 11 21 7.5 317 10 5.8
1291 27.8 7.3 2 26 2.7 1.6 6.6 1.9 1.5 3.5 1.6 1.4
133Cs 80.9 575 110 343 48 87 30
151gy 21.5 169 12 6 22 7 5.4 11 5.8 5.1 8 5.3 5
153gy 103 1765 8878 555 1288 278
155Gd 86.5 1317 259 795 116 208 72
161py 25.6 3804 114 4,59 267 5.59 3.94 102 4.3 3.64 6.5% 3.8 3.5¢
170yp 84.2 5014 1230 3240 614 1017 406
193]y 73 527 2040 208 395 131 183 100
19770 71.3 351 1552 126 255 76 110 56
27Np 59.5 298¢ 11.4¢ 7084 244 6.94 2274 9.84 5.44 464 6.54 4.64

¢ Should be multiplied by a factor of 10 because of line broadening.
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structed vacuum chambers are used. They are constructed with materials that are
nomnreactive with the sample at temperatures as high as 2000 K. On the other end of
the temperature scale it is possible to carry out Mossbauer experiments well below
4.2 K (to the order of 10~*) by using *He-“He dilution refrigerators, now commer-
cially available. More details of these cooling and heating devices are described in
several good review articles (6,12,22).

F. APPLIED MAGNETIC FIELDS

The common types of electromagnets are usually not adequate for use in
Mossbauer spectroscopy because they produce fields that are too small to resolve any
interesting information. Most of the studies use superconducting solenoids capable of
giving fields as high as 10 Tesla. These magnetic devices are constructed inside the
Dewar to give large fields parallel (longitudinal) and perpendicular (transverse) to the
source-absorber direction. These magnets are commercially available for Mossbauer
spectroscopy.

G. VELOCITY CALIBRATION

Calibrating the energy function of a Mdssbauer spectrometer is a nontrivial
procedure. In most instances one of two types of procedures is used. The simplest and
most common is the use of standard reference materials whose Mossbauer spectra
have peaks that are well defined in velocity units. The other method is an optical one
which uses either a Michelson interferometer or a Moiré fringe device.

Several standard calibration references are available. The most common reference
is the 3’Fe Mossbauer spectrum of a-Fe. The splittings for various materials are given
in Fig. 6.17. The a-Fe has several advantages, including multiple peaks that not only
allow for the determination of the velocity calibration scale constant, but also enable
a check of the linearity of the spectrometer. Sodium nitroprusside
(Na,Fe(CN)sNO - 2H,0) is another common material but no check can be made on the
linearity because there are only two peaks. This is usually employed when the
velocity scale is small in a particular experiment, i.e., a maximum velocity of less
than 3 mm/s. Although both of these materials are the most widely used, there are
several other substances that are used. These give multiple line spectra for larger
velocity scales than those for which a-Fe is suitable. a-Fe,0; can be employed, but
care must be taken because of the possibility of other phases. To achieve lines at larger
velocities one can use a source of ¥’Co in a-Fe and an a-Fe absorber, which will give
lines over a range of velocities of 20 mm/s. Finally the largest practical splitting
currently used is the ''Dy Mossbauer spectrum of Dy metal, which gives peaks over a
range of velocities exceeding 400 mm/s. -

Recently two optical devices for calibration have been gaining wide support
(9,13,14). These are now available on most commercial spectrometers and are more
precise than the reference calibration discussed above. Both optical devices can use
either a lamp or a laser, but the latter is preferred.

With a Michelson interferometer, one can measure distance and time very
precisely to determine velocity. There are two basic mirrors: one is fixed and the other
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Fig. 6.17. Standard splittings for Mossbauer velocity calibrations.

is connected to the moving rod of the transducer. The intensity of light detected at the
photodiode depends on the position (x) of the moving mirror (see Fig. 6.18), such that

I ~ sin

27X

A2

(35)
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where \ is the wavelength of the laser. When the mirror moves A /4, the intensity of the
laser beam at the photodiode will change from a maximum to zero. The photodiode is
used to count the number (n;) of the times there is a change from dark to bright to
dark. The calibration of a particular velocity channel is achieved using the following
relation for the average velocity:

v = n,)\
"7 2NAt,

(36)

where At, is the time spent in the channel and N is the number of times the channel has
been opened for counting.

Similar is the Moiré fringe method, which is also shown in Fig. 6.18. The average
velocity of the i channel is given by

n,'d
4NAt;

v, = (37)
where d is the grating distance. The Moiré method does not require the sometimes
difficult aligning and focusing necessary when the interferometer is used, but it is an
order of magnitude less precise. The interferometer gives a “direct measurement,”
while the Moiré method requires a knowledge of the spacing between lines in the
grating. However, an advantage of the Moiré devices is their compactness.

<::;r|RROR

- _—OPTICAL GRATING (MOVING)
o

TRANSDUCER

LAMP PHOTODIODE

OR P

LASER—

_— MIRROR

MOVING

MIRROR PHOTODIODE
TRANSDUCER

BEAM SPLITTER

LASER

Fig. 6.18. Schematic diagram for a Moiré fringe device (upper diagram) and a Michelson interferometer
(lower diagram).
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H. CURVE FITTING

Mossbauer spectra are collected and stored in the form of digital data. This allows
spectra to be examined very carefully, usually by attempting to fit the data to a
theoretical model. The most important data frequently are the positions of each of the
spectral lines. In fitting the data to the model, it is normally important to know the
intensity and the line width of each absorption peak. As discussed earlier, the shape of
absorption peaks for zero-thickness absorbers is Lorentzian. Even though samples
are of finite thickness, the Lorentzian shape is a good approximation and can be
treated with computers quite easily. A more general line shape is the “transmission
integral” but the computer time necessary for the fitting is long and prohibitively
expensive. However, when there are two or more Lorentzians overlapping, serious
consideration must be given to using a transmission integral fit as opposed to a simple
sum of Lorentzians.

Most of the computer programs used contain subroutines that perform least-square
fits for the data. Before this is done, a certain amount of preprocessing of the data is
required. The digital data is in the form of channel numbers (representing velocity)
versus counts (representing intensity). If the spectrometer is not linear in velocity,
velocity values are assigned to each data point using the data obtained by one of the
calibration techniques described earlier. If a transmission integral fit is desired for the
least squares, then the velocity scales must be adjusted to allow for a constant velocity
increment between data points. If the asymmetric velocity waveform is used, then the
spectrum can also be folded since the first half of the data is a mirror image of the
second half. This procedure will remove some of the unwanted features of the data
due to the geometry.

After the preprocessing, the least-squares computation can be performed. Com-
parison is made between the experimental data (Y;) and the theoretical data (A ) for a
particular model. In particular, a function (x?) is minimized:

. — A)?
X2 o Z (YI O_ZAI) (38)

where o; is the standard deviation of Y;. Since nuclear decay data is described by
Poisson statistics, i.e., the standard deviation is nothing more than the square root of
counts in the channel of interest, equation 38 becomes

—A)?

Care must be taken in proposing a certain model and getting a good fit for the data,
since it is often possible to have two models give almost identical values for x2.

Some laboratories do not perform a least-squares fit but merely estimate the peak
positions, widths, and intensity from a plot. However, digital computation gives
experimental parameters that are approximately an order of magnitude more accurate
and precise. The data from a storage device can be outputted by one of several devices
such as x-y plotters, strip chart recorders, paper computer tapes, oscilloscopes,
teletypes, and even on-line devices.
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V. ISOMER SHIFT AND ITS APPLICATION

The basic interaction which results in the isomer shift (§) has already been
described in Section III. The isomer shift can be used to measure electron densities at
the nucleus although primarily one measures changes in it when going from one state
to another (e.g., changes in the chemical species, the physical phases, or reference
frames). Of the various Mossbauer parameters, 8 is certainly the most unique since
the information it provides cannot easily be obtained by other means. The first report
of & data was made in 1960 by Kistner and Sunyar (23). Since then there has been a
voluminous amount of experimental and theoretical work reported in the literature.
One of the major contributions has been an entire book on the subject (35). This
approximately 1000-page volume covers a comprehensive range of topics discussed
by leading Mdssbauer spectroscopists.

For chemists and solid-state physicists the isomer shift can be correlated to a
number of factors. These include the number of ligands, the geometric arrangement
of the ligands about the Mdssbauer nucleus, the electronegativity of the ligands, the
bonding characteristics between the Mssbauer atom and the ligands, and the
electronic state of the Mdssbauer atom. Most fruitful Mdssbauer isomer shift data is
obtained when a series is considered in which all variables are held constant except
one.

Most of the & data is interpreted in the context of empirical relations, i.e., the
isomer shift is correlated either with those factors mentioned above or with data from
other experimental methods (e.g., NMR, IR, ESCA, and powder X-ray diffraction).
Theoretical development has been gradual but shows promise as quantum methods
are continuously being refined.

A. ELECTRON DENSITY CALCULATIONS

Since the isomer shift is a measurement of electron density in the vicinity of the
nucleus, quantum determinations in the form of ¥?(r = 0) have offered much insight
into those species studied. For example, various self-consistent field (SCF) calcula-
tions have been used. In these calculations the Mossbauer atom is treated indepen-
dently of any ligands, i.e., as a free ion. One of the first treatments was the Hartree-
Fock calculations for iron by Walker, Wertheim, and Jaccarino (43). Their results are
given in Fig. 6.19. This plot can be used to interpret isomer shifts of ionic materials.
Similar calculations have been done for a number of other Mdssbauer atoms. As an
example, the results for antimony are shown in Fig. 6.20 (32). In both of these
figures of plots of electron density versus electronic configuration, the isomer-shift
scale has been superimposed.

While the SCF results are instructional in understanding factors that affect the
isomer shift, they neglect covalency. This can be incorporated into the model by using
some type of molecular orbital (MO) method, which usually considers only the
valence atomic orbitals. Specifically, molecular orbitals are assumed to be made up of
a linear combination of atomic orbitals (LCAO), i.e.,

Vyo = audy + ard, (40)
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Fig. 6.19. Hartree-Fock calculations for the isomer shift of 3’Fe as a function of 3d- and 4s- electron
charge density. Reproduced by permission from Phys. Rev. Letters (43).

where ¢, and ¢, are the atomic orbitals of the metals and its ligands. The coefficients
ay and a, control the amount of mixing of each atomic orbital which gives the
molecular orbital. An example of an energy diagram which results from these
considerations is given in Fig. 6.21 for transition octahedral metal complexes
containing ligands with bonding (17). The relative spacing of the energy of the
molecular orbitals is related to the ligands and the geometric structure. The filling of
these levels and values for the coefficients (a4 and a;) are quite important in the
interpretation of isomer shift data since they allow the determination of electron
populations for the Mdssbauer atom.

Extended Hiickel MO theory provides a fairly simple procedure for obtaining the
needed electron population to interpret Mossbauer parameters. In this procedure all
atoms in the molecular system are considered. The basis set is usually taken from
Slater-type atomic orbitals in which all the valence orbitals of each atom are
considered. Overlap integrals are calculated, but Coulomb integrals are set equal to
the proper valence state ionization energies (42). The Wolfsberg-Helmholtz approxi-
mation is used to obtain numerical results for the Hamiltonian matrix (47). This
model has been successful as a semiempirical approach.
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B. OXIDATION STATES

From Figs. 6.19 and 6.20, it can be seen that isomer shifts can easily be used in
many cases to differentiate between oxidation states. Even for iron where the
difference between Fe(II) and Fe(II) is only a 3d electron, it is usually fairly simple
to differentiate between the two &’s for many compounds. While 3d electrons have
essentially no direct effect on the electron density at the nucleus because they do not
penetrate it, they do shield the 45 electron of an iron atom from the nucleus. Fig. 6.22
contains several examples of collected data showing the relation between & and the
oxidation state of the Mdssbauer atom. In many cases, there is a distinct range of
isomer shifts for a particular oxidation that does not overlap with the range of another.

C. ELECTRONEGATIVITY

Within the range of isomer shifts for a particular oxidation state, the second factor
that affects these values is the electronegativities of the ligands. Generally, as the
electronegativity of the ligand increases, there is a corresponding decrease in electron
density at the nucleus. There are many cases of linear relations between the isomer
shift and electronegativity or a related parameter. For example, many iodine-
containing molecules are made of bonds which are only pure p. One such empirical
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result for this class of compounds is

8 =0.136k, — 0.54 (41)

where A, is the number of vacant “p” orbitals at the iodine (30). The values for £, are
directly related to electronegativity.

More commonly, the linear empirical relation exists directly between the isomer
shift and the ligand electronegativity. Such an example is shown in Fig. 6.23. The
resulting linear equations for these two series are § = 2.6 + 0.019 - (Ionicity in

percent) for R,SbX and 6§ = 1.4 + 0.034 - (Tonicity in percent) for R;SbX, (10).
D. PARTIAL CHEMICAL SHIFTS

Numerous cases of linear relations between ligand electronegativity and isomer
shift have led to the concept of partial chemical shift (pcs) (18), i.e.,

& = Constant + . (pcs); (42)
i=1
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where n is the coordination number. Using pcs tables, it is possible to predict isomer
shift values for various compounds, or conversely, isomer-shift data can possibly be
used to determine geometric structures. For example, see the recent 12!Sb Mossbauer
data summarized in Table 6. VIII for Me,SbCl;_,). X-ray single-crystal data is only
available for SbCl;, which indicates that the CI’s are trigonally coordinated to the
antimony and the Cl-Sb-ClI bond angles are about 95° (25). It is unlikely that X-ray
structural data can be obtained for the other three compounds due to the difficulty of
growing single crystals and their reactivity. Mossbauer spectroscopy is then of special
value because it gives clues to structure. In this particular example, it is apparent that
the structures of all four species are quite similar since there is the constant change in
8’s,i.e., [pcs(CH3) — pes(C17)] = 1.9 mm/s and the model of partial chemical shifts
requires that the structures in a series be the same.

The values of the pcs, as has been mentioned above, depend on a number of
factors; but if all of these are kept constant and only the ligands are allowed to vary,
then regardless of the particular Mossbauer isotope or the structure being considered,

TABLE 6. VIII
1213h Méssbauer Data for Me,SbCl(3— ) (39)

e?qQ | exp
8 (mm/s) e2qQ | theory M exp
x (mm/s) (*1.0) (mm/s) (£0.1) m theory
0 -5.9 +13.3 +15 0.2 0.0
1 —4.2 +31.0 +29 0.4 0.3
2 —2.5 —-30.8 —28 0.8 0.6
3 —0.1 +15.8 15 0.0 0.0
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aspecial ordering is observed. That is, if the ligands are ordered according to their pcs
values, the resulting series will be nearly identical to the spectrochemical series.

E. SECOND-ORDER DOPPLER SHIFT

Care must be taken when interpreting isomer-shift data because included with all
isomer shift values is a very small contribution due to the second-order Doppler
(SOD) shift. This contribution needs to be considered and corrected for in those few
cases when it is significant enough to measurably change an isomer-shift value.

SOD shift results from the relativistic emission or absorption energy shift of a
stationary system seen by another system that is moving; in this case the systems are
the source and the absorber. This energy shift in the emitting (or absorbing) gamma is
given by

8sop=E,(1+ vlc +1/2(v[c)*+ ...) (43)

The second term will average out since (v ) for a vibrating nulceus is zero; however
(vz) is nonzero. Therefore, the second-order term will contribute to an energy change
in the gamma referred to as the second-order Doppler shift. The Debye model can be
used to evaluate this shift (85op). One finds

_ =T [36 1“’"”ﬂx_] 44
8sop = e [8 T +3(90> JO e — 1) (44)

Values of these shifts have been calculated for *’Fe, "“Sn, and 2!Sb and are in
Table 6.IX.
TABLE 6.IX
Second-Order Doppler Shifts in mm/s

Experiment temperature

Debye (X)

temperature
Isotope X 4.2 40 77 100 150 200 250 300
5TFe 20 0.0059 0.0296 0.0564 0.0731 0.1096 0.1461 0.1826 0.2191

40 0.0110 0.0306 0.0570 0.0736 0.1099 0.1463 0.1827 0.2192

60 0.0164 0.0324 0.0579 0.0743 0.1104 0.1467 0.1830 0.2194

80 0.0219 0.0348 0.0592 0.0753 0.1111 0.1472 0.1834  0.2198
100 0.0274 0.0377 0.0609 0.0766 0.1119 0.1478 0.1840  0.2202
120 0.0329 0.0411  0.0629 0.0782 0.1130 0.1486 0.1846  0.2208
140 0.0383 0.0450 0.0652 0.0800 0.1142 0.1496 0.1854 0.2214
160 0.0438 0.0491 0.0678 0.0821 0.1157 0.1506 0.1862 0.2221
180 0.0493 0.0535 0.0707 0.0844 0.1173 0.1519 0.1872  0.2229
200 0.0548 0.0582 0.0738 0.0870 0.1190 0.1532 0.1883  0.2239
220 0.0602 0.0630 0.0772 0.0897 0.1210 0.1547 0.1895  0.2249
240 0.0657 0.0680 0.0808 0.0927 0.1231 0.1563 0.1908  0.2260
260 0.0712 0.0730  0.0847 0.0959 0.1254 0.1581 0.1923  0.2272
280 0.0767 0.0782 0.0887 0.0993 0.1278 0.1600 0.1938  0.2285



TABLE 6.IX (Cont.)

Second-Order Doppler Shifts in mm/s

Experiment temperature
Dehye R
temperature

Isotope (K) 4.2 40 77 100 150 200 250 300
300 0.0821 0.0834 0.0928 0.1028 0.1304 0.1620 0.1954  0.2298
3200 0.0876 0.0887 0.0971 0.1065 0.1332 0.1642 0.1972 0.2313
340  0.0931 0.0940 0.1016 0.1104 0.1361 0.1664 0.1990  0.2329
360 0.0986 0.0993 0.1062 0.1144 0.1391 0.1688  0.2010  0.2345
380 0.1040 0.1047 0.1108 0.1185 0.1422 0.1713  0.2030  0.2363
400  0.1095 0.1101 0.1156 0.1228 0.1455 0.1739  0.2052  0.2381
1195, 20 0.0028 0.0142 0.0270 0.0350 0.0525 0.0700 0.0874 0.1049
40  0.0053 0.0147 0.0273 0.0352 0.0526 0.0701 0.0875 0.1050
60  0.0079 0.0155 0.0277 0.0356 0.0529 0.0703 0.0877 0.1051
80 0.0105 0.0167 0.0284 0.0361 0.0532 0.0705 0.0879  0.1053
100 0.0131 0.0181 0.0292 0.0367 0.0536 0.0708 0.0881 0.1055
120 0.0157 0.0197 0.0301 0.0374 0.0541 0.0712 0.0884 0.1057
140  0.0184 0.0215 0.0312 0.0383 0.0547 0.0716 0.0888  0.1060
160  0.0210 0.0235 0.0325 0.0393 0.0554 0.0722 0.0892 0.1064
180  0.0236 0.0256 0.0338 0.0404 0.0562 0.0727 0.0897 0.1068
200 0.0262 0.0279 0.0354 0.0417 0.0570 0.0734 0.0902 0.1072
220 0.0288 0.0302 0.0370 0.0430 0.0580 0.0741  0.0908 0.1077
240  0.0315 0.0326 0.0387 0.0444 0.0590 0.0749 0.0914  0.1082
260  0.0341 0.0350 0.0405 0.0459 0.0601 0.0757 0.0921  0.1088
280  0.0367 0.0375 0.0425 0.0476 0.0612 0.0766  0.0928  0.1094
300 0.0393 0.0399 0.0445 0.0493 0.0625 0.0776 0.0936 0.1101
320 0.0420 0.0425 0.0465 0.0510 0.0638 0.0786 0.0944 0.1108
340  0.0446 0.0450 0.0487 0.0529 0.0652 0.0797 0.0953 0.1115
360  0.0472 0.0476 0.0508 0.0548 0.0666 0.0809 0.0963 0.1123
380  0.0498 0.0501 0.0531 0.0568 0.0681 0.0821 0.0973 0.1132
400 0.0525 0.0527 0.0554 0.0588 0.0697 0.0833 0.0983 0.1140
1215p 20 0.0028 0.0139 0.0266 0.0345 0.0516 0.0688 0.0860 0.1032
40  0.0052 0.0144 0.0268 0.0347 0.0518 0.0689 0.0861 0.1033
60 0.0077 0.0153 0.0273 0.0350 0.0520 0.0691 0.0862 0.1034
80 0.0103 0.0164 0.0279 0.0355 0.0523 0.0693 0.0864 0.1035
100 0.0129 0.0178 0.0287 0.0361 0.0527 0.0696 0.0867 0.1037
120 0.0155 0.0194 0.0296 0.0368 0.0532 0.0700 0.0870  0.1040
140  0.0181 0.0212 0.0307 0.0377 0.0538 0.0705 0.0873  0.1043
160  0.0206 0.0231 0.0319 0.0387 0.0545 0.0710 0.0877 0.1046
180  0.0232 0.0252 0.0333 0.0398 0.0552 0.0715 0.0882 0.1050
200 0.0258 0.0274 0.0348 0.0410 0.0561 0.0722 0.0887  0.1055
220 0.0284 0.0297 0.0364 0.0423 0.0570 0.0729 0.0893  0.1059
240 0.0310 0.0320 0.0381 0.0437 0.0580 0.0736 0.0899  0.1064
260  0.0335 0.0344 0.0399 0.0452 0.0591 0.0745 0.0906 0.1070
280  0.0361 0.0368 0.0418 0.0468 0.0602 0.0754 0.0913 0.1076
300 0.0387 0.0393 0.0437 0.0484 0.0614 0.0763 0.0921 0.1083
320 0.0413 0.0418 0.0458 0.0502 0.0627 0.0773 0.0929  0.1090
340  0.0438 0.0443 0.0479 0.0520 0.0641 0.0784 0.0938  0.1097
360  0.0464 0.0468 0.0500 0.0539 0.0655 0.0795 0.0947 0.1105
380  0.0490 0.0493 0.0522 0.0558 0.0670 0.0807 0.0956 0.1113
400  0.0516 0.0519 0.0545 0.0578 0.0686 0.0819 0.0967 0.1122

488
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The isomer shift measured is a sum of the chemical isomer shifts, the primary
contribution, and the second-order Doppler shift (§sop), which in most cases can be
ignored. Therefore, in general one has

8measure = 8SOD + 8 (45)

F. PHASE ANALYSIS

1. Phase Transitions

In most cases, the electronic structure is different enough in two different phases to
allow the use of the isomer shift to determine if and where a phase transition has
occurred. In these cases of first-order transitions, there will be a discontinuity in the
isomer-shift value. The usual parameter varied is temperature.

Some spectrometers have been designed that operate at a single velocity set on an
absorption peak. Then the temperature is varied and the number of gammas detected
for each temperature increment is recorded. When a phase change occurs, the count
rate will increase due to a decrease in resonance absorption. The resulting plot of
counts versus temperature is called a thermal scan and is considerably less compli-
cated than obtaining a complete Mossbauer spectrum at each temperature.

2. High Pressure

Besides temperature, the pressure can also be varied. This has been successfully
accomplished for about 10 Mdssbauer transitions. Studies have usually been centered
around phase transitions and/or the effect of pressure on the isomer shift. There is a
definite volume dependence of the isomer shift which can be expressed as

06 \ _
(W)T = constant (46)

As for temperature, it is possible to vary the pressure as a function of the number of
counts at a constant velocity.

3. Chemical Identification

Mossbauer spectroscopy can be used for assisting in the identification of particular
chemical substances. For example, it has been used to identify those iron minerals
found in samples brought back from the moon. In these identifications, the isomer
shift is usually used along with possible quadrupole coupling and magnetic hyperfine
data when attempting to identify unknown materials. Other active scientific areas of
interest in which chemical identification is important include corrosion processes,
mechanisms in catalysts, biological activity of iron-containing systems, and even the
history of ancient artifacts, primarily pottery. Using Mossbauer spectroscopy as a
fingerprint is discussed quite thoroughly in several chapters of a book by Bancroft (3).
Numerous detailed examples can be found in Stevens and Shenoy (39a).
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VI. MAGNETISM

A. LINE INTENSITIES

As discussed in an earlier section, there are six Mossbauer transitions observable
for Fe due to the interaction of the nuclear magnetic moment and a magnetic field.
For these transitions Am; = 0, = 1. The intensities of these transitions have an
angular dependence which is related to Am,. A convenient angle (6) is defined as the
angle between the directions of the magnetic field and the gamma-ray emission. A
number of the angular relations are listed in Table 6.X. Usually there is no preferred
direction, and thus the relative intensities of the peaks can be determined by averaging
the angular dependence over all angles. For 57Fe this gives a 3:2:1:1:2:3 ratio of line
intensities. If a ¥Fe magnetic Mossbauer spectra does not give this ratio, then there is
a preferred orientation in the material. For example, in the two extreme cases, § = 0°
gives 3:0:1:1:0:3 and 6 = 90° gives 3:4:1:1:4:3. The spectrum shown in Fig. 6.8 is, in
fact, closer to this latter ratio, indicating that the aligned fields in the foil are mainly in
a direction approximately 90° relative to the gamma direction. It is useful to know if
there are preferred magnetic field directions in materials and a determination of this is
possible with Mossbauer spectroscopy. When preferred directions do exist these
materials are said to have “texture.”

B. CONTRIBUTIONS TO THE MAGNETIC FIELD INTERACTIONS

Besides magnetic fields due to external sources, there are three primary internal
magnetic field interactions (44) which have been discussed previously in Sec-
tion III.B. One of these, the Fermi contact interaction, results from a direct coupling
between the spin density of s electrons at the nucleus and the nuclear spin. It can be
expressed as

Ho=-2nYs @5, T @)

where B is the Bohr magneton (8 = 9.274x/10~% Joule/Tesla) and S, is the core
electron spin. The summation represents an imbalance of electron density at the
nucleus. This polarization comes about via the unpaired electrons in the outer
electron shells of the atom. The Fermi contact is usually the largest of the magnetic
field interaction terms.

A second contribution to the internal magnetic field interaction is the orbital term

1= &

Hi=285L1 (48)

There are several cases when this term is zero. These include those when an outer
electronic shell is either half full and is high spin or completely full. For example,
high-spin Fe(IIT) compounds do not have this magnetic field contribution.

While the Fermi contact considers the interaction of the nucleus and the spin
density of the electrons at the nucleus, a third contribution considers the interaction
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between the nuclear spin and the spin of the electrons outside of the nucleus. This is
called the dipole interaction and the resulting field can be expressed as

Hp= —2/3[3?5;5’—% T (49)

The dipole contribution is usually quite small compared to the others and is zero in
cases of cubic symmetry.

Other possible sources for an effective magnetic field include the conduction
electrons that are polarized by neighboring atoms or other electrons in the atom. Also
possibly contributing are fields produced by neighboring atoms either by overlap
distortion of the core s orbitals or dipole fields of localized moments (41).

C. MAGNETIC HYPERFINE FIELD SPECTRA

The common difficulty encountered when interpreting quantitatively the
Mossbauer data (8, e?qQ , magnetic hyperfine interaction) is not knowing the value of
the nuclear components of the interaction equations. In the case of the magnetic
hyperfine field interactions, however, the nuclear term (the nuclear moment or
nuclear g factor) is often known well enough. Values of these are given in Table 6. X1.
The nuclear g factors in this table are given in units such that the values in mm/s of
observed spectra splittings can be then directly converted to units of Tesla. For
example, (see Figs. 6.7 and 6.8 for «-Fe) using the g, and g, splittings in mm/s and
the values 0.1188 mm/(S - T) and 0.06790 mm/(S - T), respectively, the value of
33 Tesla is obtained for the effective internal field of metallic iron.

VII. QUADRUPOLE INTERACTION AND ITS APPLICATION

A great deal of our understanding about the nuclear quadrupole interaction has
come from NQR (nuclear quadrupole resonance) spectroscopy, which was already
fairly well established when Mossbauer spectroscopy began to be used for making
quadrupole measurements. While Mossbauer spectroscopy does not have the preci-
sion of NQR, it does add to our knowledge of quadrupole interactions because it
enables observations of quadrupole coupling in many materials not possible with
NQR. These are materials that have no quadrupole interaction in their ground states
since their spins are either 0 or 1/2. However, excited nuclear states usually have spins
of 1 or greater. As nuclei undergo Mossbauer transitions, their spectra reveal
information about the quadrupole coupling in their excited states. Primary examples
of such cases are *’Fe and !“Sn. Another contribution of Mdssbauer spectroscopy to
the study of quadrupole interactions is the easy determination of the sign of the
quadrupole coupling constant. Examples include ?'Sb and '?I.

A. ELECTRIC FIELD GRADIENTS

Quadrupole measurements give information about the electric field gradient
(EFG). Although the EFG in general contains nine elements (see equation 25), the
information of interest is condensed into two parameters: the principal diagonal
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TABLE 6.X
Relative Line Intensities of Magnetic Hyperfine Interactions (15)

I, I,  Multipolarity ~ Examples | m (1)> | m(2)> | Amy | @ A? A%H = 0%P  A2%(6 = 90°)°
3/2 12 M1 57Fe, 1198n, +3/2 +1/2 1 3 3 3
125Te +1/2 +1/2 0 2 0 4
F12 +1/2 1 1 1 1
2 0 E2 166y, 170Yh +2 0 2 1 0 1
+1 0 1 1 1 1
0 0 0 0 0
512 32 M1 6INi, 99Ru, +5/2 +3/2 1 10 10 10
155Gd +3/2 +3/2 0 4 0 8
+1/2 +3/2 1 1 1 1
+3/2 +1/2 1 6 6 6
+1/2 +1/2 0 6 0 12
F12 +1/2 1 3 3 3
52 52 MI 6lpy 237Np  +5/2 +3/2 0 25 0 25
+3/2 +5/2 1 10 10 5
+5/2 +3/2 1 10 10 5
+3/2 +3/2 0 9 0 9
+1/2 +3/2 1 16 16 8
+3/2 +1/2 1 16 16 8
+1/2 +1/2 0 1 0 1
F12 *1/2 1 18 18 9
7/2 512 M1 121gp, 1277, +7/2 +5/2 1 21 21 21
1291 1S1gy +5/2 +5/2 0 6 0 12
+3/2 *=5/2 1 1 1 1
+5/2 +3/2 1 15 15 15
+3/2 +3/2 0 10 0 20
+1/2 +3/2 1 3 3 3
+3/2 +1/2 1 10 10 10
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@ The angular dependence is related to the multipolarity and the | Am, | value, i.e., or dipole radiation (M1)

| Am;| =0 : sin? .
| Am;| =1 : (1+ cos?9)?

and for quadrupole radiation (E2)

| Am;| =0 : 3/4sin226

| Am; | =1 : 1/2(cos?8 + cos?20)

| Am; | =2 : 1/8 (4sin%0 + sin?26)

where 6 is the angle between the direction of the magnetic field and the direction of the emission of the gamma.

b A2 are relative intensities.
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TABLE 6.XI

Nuclear Magnetic Moment Data (38)¢

Magnetic moment

Gyromagnetic ratio

I " Ratio of g0 g1

E, Ground Excited magnetic Ground Excited

Isotope (keV) I, L (nuclear (nuclear moments mm/(S - T) mm/(S - T)
magnetons) magneton)

57Fe 14.4 32 12 0.090604(9) —0.15532(4) —1.7142(4) 0.118821(12)  —0.067897(17)
SINi  67.4 52 3/2 0.74980(10) 0.478(7) —0.637(11) 0.070083(12) 0.0268(4)
YRu  89.4 3/2 52 —0.626(13) —0.285(5) 0.456(2) —0.0265(6) —0.0201(4)
19sp 239 32 12 —1.0461(3) 0.633(18) —0.605(17)  —0.8283(3) 0.167(5)
2y 372 72 52 3.3591(6) 2.47(3) 0.735(9) 0.3418(2) 0.180(2)
125Te 355 3)2 1/2 —0.8872(3) 0.604(6) —0.681(4) —0.4729(4) 0.1073(11)
1271 576 12 52 2.8091(4) 2.54(4) 0.905(16) 0.18436(7) 0.1191(19)
1291 27.8 52 12 2.6174(8) 2.797(3) 1.0687(11) 0.2545(2) 0.3808(5)
3cs 811052 72 —2.5786(8) 3.443(21) 1.335(8) —0.08596(3) 0.1607(10)
SIgy 215 72 512 3.465(2) 2.587(3) 0.7465(6) 0.6083(4) 0.3244(3)
I3y 103.2 3/2 52 1.5294(7) 2.043(5) 1.336(3) 0.05604(3) 0.1248(3)
155Gd  86.5 5/2 3/2 —0.2584(5) —0.529(5) 2.05(2) —0.01881(4) —0.0231(2)
6lpy 257 52 52 —0.479(5) 0.592(6) —1.2368(14) —0.0706(7) 0.0872(9)
16Er  80.6 2 0 0.0 0.629(10) - 0.0 0.0369(6)
10yb 843 2 0 0.0 0.669(8) - 0.0 0.0375(4)
181T, 6.2 92 12 2.356(7) 5.24(7) 2.23(3) 1.020(4) 1.764(24)
193[r 73.0 1/2 32 0.1583(6) 0.4683(20) 2.958(6) 0.1366(5) 0.1212(5)
YAu 773 12 32 0.1448(7) 0.416(3) 2.875(22) 0.01180(6) 0.1017(7)
ZNp 595 52 5/2 2.5(3) 1.34(12) 0.535(4) 0.159(19) 0.085(8)

@ Uncertainties in the last digit(s) are given in the parenthesis.
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TABLE 6.X1II
The Elements of the Electric Field Gradient
in Spherical Coordinates for a Point Charge
q

Ve = qr=3(3 sinZ9cosp— 1)
Vyy = qr=3(3sin?0sin’p—1)

V.= qr 33cos¥—1)

Vi = Vi = gr=3(3sin?dsindcosdp)
V= V= qr=33sinfcosfcosd)
Vye =V = qr =33 sinfcosbsing)

component of the diagonalized EFG (see equation 26a) and the asymmetry parameter
(see equation 26b).

The elements of the EFG for a single point charge ¢ are given in Table 6.XII. In
generalized coordinates these elements are

Vi=q@Bxix;— r2d;).

When there are several point charges, the contributions from each must be added to
obtain the EFG elements of the configuration. The source of the point charges are
either valence electrons or ligands. The contributions to the EFG can often be
obtained from theoretical calculations using molecular orbital-wave functions. For
convenience, the EFG should be diagonalized. By choosing the most apparent
symmetry axis of the system as.the z axis, the EFG matrix will usually be diagonal-
ized with V , as the maximum valued element.

An immediate application of the terms in Table 6.XII can be made by comparing
the ligand contribution of the cis- and trans-octahedral complexes of type MA,B,.
The diagonalized matrix elements for the cis-ligand complex are

Va=V,=(A—Be
V,= (=24 + 2B)e (51)

where A = Z,/ri and B = Zg/r%. The asymmetry parameter, » = 0. Likewise, for
the trans-ligand complex, the diagonal elements are

Ve=V,=—2(A— B)e
V.= —2(—24 + 2B)e (52)

and the asymmetry parameter 7 = 0 once again. Note the difference in sign and a
factor of 2 when comparing equation 51 with equation 52. Mossbauer spectroscopy
allows for easy differentiation between these two structures. The success of the
Mossbauer results is demonstrated in Table 6. XTII.

As mentioned above, valence electrons can also contribute to the EFG. § electron
wave functions are spherical and therefore do not contribute to the EFG. Likewise, if
the valence p or d shells are half filled with no spin-pairing or completely filled, there
is no contribution to the EFG. In all other cases, valence electrons contribute to the
components of the diagonalized EFG. The g values (see equation 26a) for each of the
p and d electrons are listed in Table 6.XIV.
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TABLE 6.XIII

Comparison of Quadrupole Splittings for
cis-trans Isomers of Low-Spin Fe(II) (4,7)

A
Compounds (mm/s)
trans-FeCly(ArNC)4“ +1.55
cis-FeCly(ArNC)4 —-0.78
trans-Fe(SnCL3),(ArNC), (+)1.05
cis-Fe (SnCl3),(ArNC)4 (—)0.50
trans-Fe (CN)(EtNC)4 —-0.60
cis-Fe (CN),(EtNC)4 (+)0.30

@ ArNC = p-methoxyphenylisocyanide.

A general expression for the total g value can be written by summing the
contributions from the ligands (lattice) and the valence electrons, i.e.,

q= (1 e yx) G 1attice + (1 - R) qvalcnce'

where .. and R are Sternheimer antishielding factors. These factors correct for the
polarization of the core electrons by the ligands (y.,) and the valence electrons (R).
They can be calculated from self-consistent field methods.

The valence term can be further subdivided into the contributions from the crystal
field and from the electrons in the molecular orbitals that are created by the metal and
its ligands. The crystal field term will be important when considering nontransition
metal complexes. Using the values in Table 6.XIV, an expression for the p (g,) and
d (q.) contributions can be written based on the populations of the atomic orbitals,
ie.,

. (r7*)

(53)

TABLE 6.XIV

Magnitude of the Diagonal Electric Field
Gradient Tensor Elements for p and d Electrons

Ve Vi Ve
Wavefunction (e(r=3)) (e(r=3)) (e(r3))
Px —4/s +2/5 +2/5
Py +2/5 —4/5 +2/5
P +2/5 4205 —4fs
dyy -2/7 -2/7 +4/7
U Loy e daly o
dy, 41 -2 —2h
dxa—yi -2/7 -2/7 +4/7

d.» +2/7 +2/7 —4/7
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_ =471 —R)IN2+ 12(Ne + N,) = V2 2+ N

(ra*)

qa (54)

The lattice term can be evaluated if it is assumed that contributions come from only
the nearest neighbor. When the particular geometry is known, the components of the
EFG can be found from Table 6.XV. The remaining quantities to be determined are
the charges (Z,4, Zp,...) and the radii (1/r3, 1/r},...). It is possible to use MO
calculations for the Z values and structural data for the 1/r? values. Another method
for evaluating this data which is qualitative, will be described in the Section
“Additive Models.”

Recall from equation 26b that the values of the diagonalized elements of the EFG
all contribute to the asymmetry parameter, n. If V,, = V, (true for the many
complexes that have cylindrical symmetry), then n = 0. The other extreme occurs
when either V. or V, is equal to zero; then = 1. It is unfortunate that for ’Fe and
1Sn Mossbauer spectroscopy the value for 1 cannot be determined from data for the
pure quadrupole interaction. This is due to the fact that the measured quadrupole
splitting (A) is a function of both ¢ and ) (see equation 31), therefore not allowing for
the independent determination of these two parameters. However, these quantities
can be determined from Mossbauer spectra of higher-spin nuclei. For Fe and '"°Sn, it
is possible to determine 7 by removing the remaining degeneracy in nuclear levels
through the application of a magnetic field.

B. SPECTRA

As discussed in Section III.C, when a nucleus has a nuclear quadrupole moment
and an electric field gradient is present, the nuclear level splits into (27 — 1) levels.
The energies of the two resulting levels for / = 3/2 are given in equation 30. It is not
possible to express the energies of the split levels for most cases of / in closed form. A
series approximation has been worked out for the various 7 states (33). These can be
obtained by using the series expression for the split energy levels:

4
E,(I,m)=e2q Q> a,l,m)m" (55)

n=0

The values for a, are given in Table 6.XVI. The Mossbauer spectra will indicate
quadrupole splittings, if they are present, in both the excited and the ground nuclear
levels. The shift for each possible Mossbauer line (AE ;) can then be expressed as

where the * represents the excited nuclear level. When I = 1 for both excited and
ground nuclear levels, one may substitute equation 56 into equation 55 giving the
energy shift as

AE(I,m)) = e?q Q [RoEp(I*, mx) — Eo(I,m))] (57)
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TABLE 6.XV.
Point Charge Model Expressions for the Components of the EFG Tensor at a Nucleus M Due to Ligands A,B,C,D for Common Structures (5)

Structure Components of the EFG ¢ Structure Compound of the EFG
2 Ve=Va=V,=0 : V= {2(a] - 2/3([B]1 + 2[CD}e
B A 4 Vy ={-[a]-[B] +2[CI}e
[ 1\|4 vx, ={- ]tfsls (B1-2/3[Cl}e
------- Ve = Vo= {V2/3(-2[B1+ 2[CD}e
R 1IN R~ =Vy=0
B g B BccC n20
z V.. = {2041 2[B1}e A = 1/2¢2Q(4/3p? + 8/3 Q)12
s Vi ={~[B] + [Al}e P =[A]l+ [B]-2[C]
| Vxx={+[B]+[A]}e 0 =I[A]l-I[B]
Moo n=0 Sign = sign of P
Z N
B B B
A V., = {2[4] - 2[B1}e H V.. = {2[4] - 2/3([B]1 + [C] + [D])}e
P Vyy = {2[B] - 2[AT}e A e Vyy = {~[41— [B] + [C] + [D]}e
VARN V=0 | Ve = {~[41+5/3(B] - 1/3(C] + [DD}e
A B B n=1 /l\ld\ Vi =V, ={V2/V3(Cl- [D)}e
D 4 Vg = va = {V2/3(-2[B] + [C] + [D]}e
Vo= V= {2V3(C]1- [BD}e
n#0
z V= {4[B]® — 3[B]te}e g Vo = {-2[A1% — [BIe + 4[B]ba}e
g B/ Vyy = {3/2[B1% — 2[B]%2}e A B Vyy = {5/2[A1%e — [B]te — 2[B]ba}e
N Vo = {3/2[B1be — 2[B]ba}, NI Vi = {—1/2[A1%¢ + 2[B]te — 2[B]b2}e
M—B..... n=0 M—B =0
/1 d
B B A B
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TABLE 6.XV. (Cont.)

Point Charge Model Expressions for the Components of the EFG Tensor at a Nucleus M Due to Ligands A,B,C,D for Common Structures (5).

Structure Components of the EFG ¢¢ Structure Compound of the EFG
z B V= {2041 - [B] - [CI}e z V. ={2(4] - 2[C]}e
X V= {-[Bl+2(C] - [Al}e A Vi ={4lC] - 3[B] - [AD}e
S vy, = {2[B] - [C] - [Al}e N vy, = {3(B] - 2[C] - [Al}e
M n70 M n#0
RN 71
B g B B g C.
“X
z y Va=Vy=V,=0 z . V., ={4lA] - 2[B] - 2[C]}e
A A o vy ={[C] +[B] - 2[Al}e
A\| / B\I /C Vii = {[C] -+ [B] e Z[A]}e
M M n=0
ARN 215
A B B B A C.
..X .
z y V., = {3l4]- 3[Bl}e Z . V. ={4[lA] — 2[B] - 2[C]}e
X v,y ={3(8]-3l4l}e pP— V= {4[B] - 2[C] - 2(Al}e
NV V=0 NV V,, = {4[C] - 2[B] - 2[Al}e
M ni= M n#0
A s 745
B A A C A

B.
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g Wy V. ={2[A1 +[C] - 3(Bl}e z .y V.. ={[A]+ [B] - 2[Cl}e

R e Vo =1{3[B] — 2[C] — [Al}e A V,, = {[B] + [C] — 2[Al}e
B S v,y = {IC1- e g Vo= {41 +1C1 - 2B}e
M n#0 M n#0
AR /1IN
B ¢ B CB A
™ .
z y V. = {4[B] — 2[A] — 2[C]}e z y V. ={4lc] - 2[A] — 2[Bl}e
B & vy ={lAl +[C] - 2[Bl}e e vy ={[A] +[B] - 2[Cl}e
C\l /A vﬁ ={lA]l+[c] - 2[Bl}e B\ | /A v:f ={lA] + [B] - 2[C]}e
M n=0 M n=0
/1N AR
C B A B c A
X X

@ The choice of EFG axes is usually indicated on the diagram of the structure or in a footnote. In all cases, except the four-coordinate MABC, and MABCD
structures, this choice of axes serves to diagonalize the EFG tensor. The ordering of the axes to preserve the convention | V| =| V,,| =| V .| will depend
on the [L] values. Thus, the final choice of axes may not be the same as given here; i.e., V. may become V, or V,,, etc.

b Whenever 7 is not 0 or 1, it is easily calculated (after diagonalizing the tensor), taking | V.| <| Vyy| <| V.| ,andusingn = (Vi — Vy,)/V,. For
example, take the third last structure in the table, MA,B,Cy: m = 3[C]1— 3[B]/[B] + [C] — 2[AlL

¢ The x axes coincide with the C, symmetry axis, and the y and z axes lie in the symmetry planes.

4 The y axis is perpendicular to the symmetry plane, while the x and z axes lie in the plane. The orientation of the x and z axes depends on the relative magni-
tudes of [A], [B], and [C], and the tensor must be diagonalized separately for each case considered. The P and Q expressions lead to the magnitude of the quadru-
pole splitting and is obtained from the symmetrized parameters of Clark (2).

¢ The EFG tensor must be diagonalized for each example considered.

I The superscripts tbe and tba refer to trigonal-bipyramidal equatorial and trigonal-bipyramidal axial bonds, respectively.
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TABLE 6.XVI
Eigenvalue Coefficients (A ,) for the Nuclear Quadrupole Interaction (33)

! mjp ag a) a as ag

3/2 +3/2 0.2500 —0.0001 0.0425 —0.0020 —0.0017
+1/2 —0.2500 —.0001 —0.0425 0.0020 0.0017

2 2 0.2500 0 0 0 0

1 —0.1250 0.1250 0 0 0
0 —0.2500 0.0001 —0.0425 0.0020 0.0017

=i —0.1250 —0.1250 0 0 0
-2 0.2500 —0.0001 0.0425 —0.0020 —0.0017
5/2 *=5/2 0.2500 0.0003 0.0125 0.0020 —0.0003
+3/2 —0.0500 —0.0001 0.0880 —0.0431 0.0006
+1/2 —0.2000 0.0001 —0.1005 0.0410 —0.0006
7/2 +7/2 0.2500 0.0001 0.0063 0.0048 —0.0026
*5/2 0.0357 0.0008 0.0242 0.0124 —0.0058
+3/2 —0.1071 —0.0009 0.1318 =0:1327 0.0417
*1/2 —0.1785 0.0003 —0.1659 0.1239 —0.0385
92 +9/2 0.2500 —0.0004 0.0077 —0.0020 0.0009
*7/2 0.0833 0.0001 0.0201 —0.0014 0.0017
+5/2 —0.0417 0.0009 0.0359 0.0253 —0.0204
+3/2 —0.1250 0.0052 0.1404 —0.2085 0.0842
+1/2 —0.1667 —0.0048 —0.2066 0.1898 —0.0679

R, is the ratio of the excited nuclear quadrupole moment to that of the ground nuclear
quadrupole moment. Values of R, are listed in Table 6.XVIIL. If I/ = 0 or 1/2 for one
of the nuclear levels, then simply

EQ = EQ (I,m[) or
Eq=Ej (I*, my) (58)

Table 6.XVII also gives values for the nuclear quadrupole moments and for the
quadrupole coupling constant e?gQ , which are needed for evaluating and interpreting
quadrupole Mdssbauer spectra.

The only remaining items that need to be evaluated are the transition intensities for
each Mossbauer line. Again, in most cases, these are not known in closed form, but
have been evaluated as a series (33). The intensities can be expressed as

4
A(I*, 1, m[*,m[)= an(l*: I’ ml*9ml)nn (59)
n=0

where the values of b, are given in Table 6. X VIII.

In Fig. 6.24 '%'Sb is considered in which plots are shown of the energy splittings,
the relative intensity of each transition, and the effect of 1 on the relative energy
positions of each peak. An example spectrum in whichm = 0 is shown in Fig. 6.11.

For many substances 7 = 0, simplifying a number of factors. For 5’Fe and '“Sn,
the spectrareduce to doublets (see Fig. 6.10). If the absorber is powdered and there is



TABLE 6.XVII
Nuclear Quadrupole Moment Data (38)

eQ
Quadrupole Moments ) 41(2I-1)
Qo 0 Ratio of [10~22 (mm/s)(V - m?)]
quadrupole
Isotope  E, I, I, ground? excited? moments? Ground? Excited?
5TFe 14.4 3/2 12 0.0 0.21(1) 0.0 0.364(17)
6INi 67.4 52 32 0.162(15) —1.21(13)° —1.21(13) 0.060(6)  —0.134(15)
99Ru 89.4 32 52 0.12(3) 0.35(9) 2.93(5) 0.010(3) 0.10(3)
1198 239 32 12 0.0 —0.06 0.0 —0.063(11)
121gp 37.2 72 52 0.28(6) —0.38(8) 1.340(10) —0.057(17) —0.37(8)
125Te 355 3/2 1)2 0.0 —0.20(2) 0.0 —0.141(14)
1271 57.6 7/2 5/2 —0.79(10) —0.71(9)  —0.896(2) —0.103(13) —0.044(6)
1291 27.8 5/2 72 —0.55(7) —0.68(6) 1.2380(16) —0.071(9)  —0.184(16)
133Cg 81.0 5/2 7/2 —0.0030(7) —0.00013(3)
151y 215 72 5/2 1.14(5) 1.50(7) 1.312(9) 0.397(17)  0.249(12)
I3y 103.2 32 52 2.90(12) 1.51(6) 0.520(3) 0.211(9) 0.366(15)
155Gd 86.5 5/2 32 1.59(16) 0.32(8) 0.20(5) 0.46(5) 0.028(7)
161Dy 2577 512 52 2.35(16)" 2.34(16)S  0.9996(4)  0.69(5) 0.68(5)
166y 80.6 2 0 0.0 —1.59(15) 0.0 —0.247(23)
170yp 843 2 0 0.0 —2.11(11) 0.0 —0.313(16)
181, 6.2 9/2 12 3.9(4) 4.4(5) 1.133(10)  2.23(23) 1.47(17)
1931, 73.0 12 3/2 0.70(18) 0.0 0.24(6) 0.0
19744 773 1/2 32 0.594(10) 0.0 0.192(3) 0.0
ZNp 59.5 52 5/2 4.1(7) 4.1(7) 0.990(10)  0.52(9) 0.52(9)
@ Uncertainties in the last digit(s) are given in the parenthesis.
S Sternheimer corrected
TABLE 6.XVIII
Intensity Coefficients (b,) for the Nuclear Quadrupole Interaction (33)
LI mj bo by by b3 bs
72 92  +7/2 +9/2 0.2000 0 —0.0021 0.0003 —0.0005
+7/2 +7/2 0.0444 —0.0001 0.0014  —0.0009  0.0007
+7/2 +5/2 0.0056 0.0001 —0.0003 —0.0001  0.0007
+7/2 +3/2 0 —0.0001 0.0007 0.0011  0.0011
+7/2 +1/2 0 0.0001 0.0002  —0.0003  0.0002
+5/2 +9/2 0 0 0.0019  —0.0007  0.0006
+5/2 +7/2 0.1555 —0.0007 —0.0027  —0.0168  0.0093
+5/2 +5/2 0.0778 0.0028 —0.0245 0.0725 —0.0346
+5/2 +3/2 0.0167 —0.0073 0.0321 —0.0546  0.0224
+5/2 +1/2 0 0.0051 —0.0058 —0.0020  0.0031
+3/2 +9/2 0 0 0.0004 0 0
+3/2 +7/2 0 0.0007 —0.0025 0.0229 —0.0118
+3/2 +5/2 0.1167 —0.0135 —0.0190 0.0275 —0.0178
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TABLE 6.XVIII (Cont.)

Intensity Coefficients (b,) for the Nuclear Quadrupole Interaction (33)

G my my b by b, bs bs
+3/2 +3/2 0.1000 0.0640 0.1008 —0.2557  0.1359
+3/2 +1/2 0.033 —0.0513 —0.0790 0.2043 —0.1058
+1/2 +9/2 0 0 0 0.0001 0
+1/2 +7/2 0 0 0.0041 —0.0055  0.0020
+1/2 +5/2 0 0.0105 0.0441 —0.1003  0.0519
+1/2 +3/2 0.0833 —0.0566 —0.1327 0.3076 —0.1564
+1/2 +1/2 0.1667 0.0461 0.0847 —0.2021  0.1026

52 72 +5/2 +7/2 0.2500 0.0007 —0.0097 0.0100 —0.0061
+5/2 +5/2 0.0715 0.0001 0.0011 —0.0033  0.0064
+5/2 +3/2 0.0120 —0.0027 0.0037 0.0029 —0.0041
+5/2 +1/2 0 0.0013 0.0021 —0.0045 0.0017
+3/2 +7/2 0 —0.0004 0.0040 —0.0001  0.0009
+3/2 +5/2 0.1784 0.0014 —0.0677 0.0839 —0.0338
+3/2 +3/2 0.1189 0.0043 0.2327 —0.3327 0.1393
+3/2 +1/2 0.0356 —0.0033 —0.1743 0.2543 —0.1081
+1/2 +7/2 0 —0.0012 0.0056 —0.0058  0.0020
+1/2 +5/2 0 —0.0017 0.0672 —0.0819  0.0286
+1/2 +3/2 0.1191 —0.0011 —0.2379 0.3294 —0.1340
+1/2 +1/2 0.2140 0.0099 0.1344 —0.1907 0.0775

512 52 +5/2 +5/2 0.2381 0 —0.0110 —0.0022  0.0007
+5/2 +3/2 0.0952 0.0009 —0.0251 0.0454 -0.0154
+5/2 +1/2 0 —0.0008 0.0361 —0.0435 0.0149
+3/2 +5/2 0.0952 0.0009 —0.0251 0.0454 —0.0154
+3/2 +3/2 0.0857 —0.0035 0.2519 —-0.3138 0.1109
+3/2 +1/2 0.1524 0.0025 —0.2265 0.2679 —0.0952
+1/2 +5/2 0 —0.0008 0.0361 —0.0435 0.0149
+1/2 +3/2 0.1524 0.0025 —0.2265 0.2679 —0.0952
+1/2 +1/2 0.1810 —0.0017 0.1903 —0.2242  0.0803

32 52 +3/2 +5/2 0.3333 0.0003 —0.0205 0.0049  0.0013
+3/2 +3/2 0.1333 —0.0019 0.0707 —0.0436  0.0081
+3/2 +1/2 0.0333 0.0015 —0.0498 0.0380 —0.0092
+1/2 +5/2 0 —0.0003 0.0205 —0.0049 —0.0013
+1/2 +3/2 0.2000 0.0018 —0.0704 0.0430 —0.0078
+1/2 +1/2 0.3000 —0.0015 0.0498 —0.0380  0.0092

32 12 +3/2 +1/2 0.5000 0 0 0 0
+1/2 +1/2 0.5000 0 0 0 0

2 0 All five 0.2000 0 0 0 0
transitions

512 1/2 All three 0.3333 0 0 0 0
transitions
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6. MOSSBAUER SPECTROSCOPY

1=7/2
E
€X EXCITED STATE

GROUND STATE

e2qQ=0

tm,

+7/2 (7A+Egy)

+5/2 (IA"‘EQx>

=g~ *3/2(-3A+Eegx
*1/2 -5A"‘Eex

00000000 »-£0a

+5/2(7A)

+3/2 (-1.4A)
+1/2 (-5.6A)

e?qQ #0, n=0

ENERGY LEVEL DIAGRAM

; r,-o 1
]
e 8
.E 3
: 5 6
Z 2
® I7
- 4
AN 1
Relative Position
0.5
0.4t
0.31
{ —

0.2+
0.1

a 2|7 s 8 613

Relative Position

EFFECT OF n ON THE ENERGY TRANSITIONS

Fig. 6.24. Quadrupole splittings for 2ISb.
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no preferred direction for the small crystals, the intensities of the two peaks will be the
same. An additional requirement, however, is that there be no lattice anisotropy. If
there are preferred directions, the intensities will be unequal. This is illustrated in
Fig. 6.25 where the intensities are plotted as a function of the angle between the
direction of the gamma and the crystallographic z direction.
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Fig. 6.25. Relative intensities of the two quadrupolar split absorption peaks as a function of the angle
between the direction of the gamma and the crystallographic direction.

C. ADDITIVE MODEL

The quadrupole coupling data can be used quite successfully with the additive
model. This model has similarities to the partial chemical shifts discussed in Section
V.D. Using the equations in Table 6.XV and the experimental data, A’s, B’s. . .can be
determined. These values are called partial quadrupole splittings (pgs). To determine
the rest of the pgs values, one must assign a value of the pgs for one ligand. These
values can then be used to assist in the interpretation of Mdssbauer data on substances
about which little is known. The model works quite well in most instances because,
although the equations in Table 6.XV consider only the ligand contribution to g, they
are also applicable to the populations of the molecular orbitals when the orbitals are in
the direction of the ligands, as they usually are.

Examples of the usefulness of the additive model are apparent in Table 6.VIII.
Using pqs values for chloride as zero, for methyl as 13.0 mm/s, and for the lone pair
as 7.5 mm/s, one gets the calculated values for the quadrupole splitting shown there.
The relative values of the pgs for these ligands indicate, as expected, that the methyls
are electron-donating while the chlorides are electron-withdrawing.

Many other examples have been reported by Bancroft and are summarized in a
book (3). This model has also been extensively discussed by M.G. Clark (11).

VIII. SPIN HAMILTONIAN AND RELAXATION

The principal interactions discussed in Section III can be collected and the
interaction Hamiltonian written as
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Hine = Hego) + Hoy + Hee (60)

The magnetic interaction My, consists of the nuclear Zeeman interaction (Z), the
orbital term (L), and the magnetic or spin hyperfine interaction (A/):

)'((Ml) =Hz + H + Hy (61)

The nuclear Zeeman interaction occurs when there is an externally applied magnetic
field, while the magnetic hyperfine interaction is due to internal magnetic fields
produced by the electronic spins. These internal fields produce the Fermi contact and
dipole interactions which have been discussed in Section VI along with the orbital
term in equation 61.

The magnetic hyperfine interaction is analogous to the electric quadrupole
interaction, which is an electric hyperfine interaction. A magnetic hyperfine tensor
A , similar to the electric field gradient tensor of equation 25, can be defined and a
spin Hamiltonian written as

Hy=T-% -3 (62)
where T is the jnstrinsic nuclear spin and 3 is the effective electronic spin. For many
applications A can be taken to be diagonal, i.e.,

A, 0 0
f:(o A, o)
0 0 4,

Substituting the above tensor in equation 62 gives
Hy=A,1S.+A,0,S,+A_IS, (63)

Following Wickman, Klein, and Shirley (45) the effects of equation 63 on the
Maossbauer spectrum for iron are investigated below. The effective electronic-spin
case considered is S = 1/2.

For the Méssbauer transition in ¥Fe, I, = 3/2 and I, = 1/2 for the excited and
ground states, respectively. The excited state has (2/, + 1) (2§ + 1) = 8 degenerate
levels while the ground state has (2, + 1) (2§ + 1) = 4 degenerate levels. Each of

the 2/ + 1 nuclear spin states can occur with an effective electronic spin S, = *+1/2.
With a magnetic field in the z direction only, equation 63 reduces to
)_(MZAZI:S: (64)

Since the degenerate states are not mixed by the Hamiltonian of equation 64, the
energies are simply

Enu={(mM| Xy | mM) (65)

where m and M are the z quantum numbers of the nuclear and electron spins,
respectively. Equation 65 implies four energy levels for the excited state and two for
the ground state. However, each of these levels have two-fold degeneracy (see
Fig. 6.26). The dipole selection rule allows for six pairs of transitions, one (see
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Fig. 6.26. Twofold degeneracy of energy levels in 57Fe where the z component of the effective electron
spin can have values S, = '_*12. Reproduced by permission from Phys. Rev. (45).

Fig. 6.7) for each of the two electronic spin states. Since the Lorentzian pairs
overlap, the resulting Mossbauer spectrum consists of six line shapes.

Maintaining axial symmetry, but allowing small transverse magnetic fields such
that A, = A, << A, the Mossbauer spectrum becomes more complicated. Note that
the components of the hyperfine tensor are different for the excited and the ground
states. The spin Hamiltonian equation 63 in terms of raising and lowering operators is

Ax_Av
4

A+ A,

)-(M=AIIZSZ+( 4

)(1+S_+I_S+)+ ( )(1+S++1_S_) (66)
The last term in equation 66 is zero when A, = A,. However, the second term
removes the degeneracy of the | *£1/2, F 1/2) states in both the excited and ground
nuclear levels. The splitting is illustrated in Fig. 6.27 which also indicates the
second-order nondegenerate perturbation shifts on the adjacent pairs in the excited
nucleus. Two transitions between the split levels are forbidden and the resulting
spectrum consists of ten line shapes.

For the case A, =>> A, > A, the axial symmetry is destroyed. The third term in
equation 66 splits the degenerate levels | £1/2, +1/ 2) in both excited and ground-
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Fig. 6.27. Energy levels and transitions with relative intensities for 7Fe (effective electronic spin case
S=%) under various magnetic hyperfine interactions. Reproduced by permission from Phys. Rev. (45).

state nuclei. Adjacent levels in the excited nuclear state are shifted in second order
(see Fig. 6.27). The Mssbauer spectrum now has 16 different transition energies.

The above considerations assume static magnetic fields. However, the internal
fields at the nuclear sites are time dependent. The simple case of a random or
randomly fluctuating magnetic field in the z direction is considered below with
particular attention given to rapid fluctuations (fast relaxation) and slow fluctuations
(slow relaxation). To determine whether the magnetic field is changing rapidly, one
compares the time for the field to change polarity (7) with the period (7,) of the
Larmor precession. A magnetic moment i = 7 T in a constant magnetic field
H= (0,0,H) rotates about the z axis with the Larmor frequency w, = yH. The
discussion below is patterned after Blume and Tjon (8).

The line shape for gamma emission is determined by the transition probability (27)
(for an exponential decay law)

_ e ) P
P(E,) = & —E +Ey+T74 (67)

In equation 67 i and f represent the initial (excited) and final (ground) states
respectively, E, is the gamma energy, I is the line width, and H* contains the
creation operator for the photon.

The energies of the nuclear states | I m ) are found from the unperturbed and the
spin Hamiltonians

H=Xo+AL(1/2) (68)

where the effective spin is assumed to be constant (S, = 1/2) for the moment. It is the
effective spin that produces the internal magnetic field at the nucleus. There is a finite
probability for the effective spin to flip to §, = —1/2; such transitions induce the
time-dependent magnetic fields. The energies calculated from equation 68 are

A,

Eom (Lom, | X| Lom, ) = B+ &

m.=E,+gBHm, (69a)
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A ,
E;=<Igmg|)-(|Igmg>=Eg+—2&ngEg+g,Bng (69b)
where H is the internal magnetic field, g and g’ are Landé factors, and 83 is the Bohr
magneton. The probability for the emission of a photon with energy E, is obtained by
averaging over the four initial states and summing over final states:

_ | {teme [ XD | Iom,) |?
PE)=142 T5—F ~(om. — g'm JBHE + T4

memg

(70

where E, = E, — E,. If H = 0, there is one Lorentian peek at E, = E,;
however, equation 70 implies six Lorentzians when H #0 with peaks
E,= E;+ (gm,— g'm)).

The fluctuations of the magnetic field due to the spin of the electronic spins can be
easily incorporated in the calculations by letting

H —H f(1) (7D

where f{t) randomly takes on values of *1.
The generalization of equation 70 for time dependent fields is (8,46)

©

P(E) = %Re f e EyIh =31 G(1) dt (72)
0

where

G(1) = 1/42 | (Igmg | H® | [eme) |2e—iEoI/h

memg

X expl—i(gm. — g’mo)BHj f(tHat'] (73)
0

The bar in equation 73 designates averaging. When the magnetic field is constant,
i.e., f{t) = 1, one finds

G(t) = 1/42 | (Igmg | H® | Ieme) |Ze—i[Eo+(gMe—8'Mo)ﬁHll/h (74)

memg

If equation 74 is substituted into equation 72, the real part of the resulting integral
gives equation 70.
Defining o = g'm, — gm,, the average needed in equation 73 is (1,8)

B (75)

Lt sinxWt
eief i’ = (costt + ——)e

where W = 1/ is the probability for the effective spin to flip and x = (a?/W?2 — 1)%.

: 1
For slow relaxation 7 > 7, =~ o 1€ W < « and

eief N =~ cos o t = 1/2(eiet + ¢ ~iar) (76)
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using equation 75. Equation 76 implies two sets of six Lorentzians (see Fig. 6.27);
there will be six line shapes in the Mdssbauer spectrum as pairs overlap.

For fast relaxation W >> « and x = V —1 = {. The right side of equation 75
becomes
(COS[W[ —+ S_ll'l;_%)e_wl =e —i(iWr) e -Wr — 1 (77)
using the Euler formula

cosf + sinf/i = cosf — isinf = e ~1¢ (78)

(relative)

Intensity

1 1
-1.0 (o] +1.0
Doppler velocity (cm/sec)

Fig. 6.28. 57Fe Mossbauer spectra of Ferrichrome A at various temperatures. Reproduced by permission
from Phys. Rev. (45).
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Equation 73 is then simply

Gty =114, | {Igmg | H® | L.my) e~ (79)
memg
and equation 70 reduces to
l <Igmg | (5 I Ieme> |2
(E,— E)*+T7?4

P(E)=1/4

memg

(80)

The Mossbauer spectrum consists of one line shape. The fluctuations of the magnetic
field are so rapid that the field at the nucleus averages to zero during times of the order
of the Larmor period. Fig. 6.28 indicates how the six line shapes reduce to one as
temperature is increased. Increasing temperature induces rapid spin flips and there-
fore fast relaxation. However, due to other factors the resulting single line is non-
Lorentzian.

An alternative approach to relaxation employs the Bloch equations (1,31). A
theoretical spectrum using this approach is given for iron (45,46) in Figure 6.29.
Once again, the six line shapes collapse to one as relaxation times become short.

= T T T 7 v

T=|x10"° T=1x10""t

T k0™

Intensity

T=75x10"°
- -9
| . r=1x10 s h . T=5x107
-08 -04 O 04 08 -08 -04 0O 04 0.8

Velocity  (cm/sec)

Fig. 6.29. 57Fe iron relaxation spectra for Ferrichrome A with various relaxation times. Reproduced by
permission from Phys. Rev. (45).
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APPENDIX

Nomenclature and Conventions for Reporting Mossbauer Spectroscopic Data

I. INTRODUCTION

The guidelines that follow are based considerably on the reports of several groups;
most notably the Mossbauer Spectroscopy Task Group of Committee E-4 (Metallog-
raphy) of the American Society for Testing and Materials, the ad hoc Panel on
Mossbauer Data of the Numerical Data Advisory Board of the Division of Chemistry
and Chemical Technology of the National Research Council (USA), and the Commis-
sion on Molecular Structure and Spectroscopy (Physical Chemistry Division) of the
International Union of Pure and Applied Chemistry.

II. CONVENTIONS FOR THE REPORTING OF MOSSBAUER DATA

A. TEXT

The text should include information about the following:

1. Method of sample mounting, sample thickness control, sample confinement,
and appropriate composition data for alloys, solid solutions, or frozen solution
samples;

2. Absorber form (single crystal, polycrystalline powder, inert matrix if used,
evaporated film, rolled foil, isotopic enrichment, etc.);

3. Apparatus and detector used and comments about associated electronics (e.g.,
single-channel window, escape-peak measurements, solid-state detector characteris-
tics, etc.) if appropriate or unusual; data acquisition time if unusual;

4. Geometry of the experiment (transmission, scattering, in-beam, angular
dependence, etc.); direction and strength of applied magnetic field if used;

5. Critical absorbers of filters if used;

6. Method of data reduction (e.g., visual, computer, etc.) and curve-fitting
procedure; (1)

7. Isomer-shift convention used or the isomer shift of a standard (reference)
absorber. Positive velocities are defined as source approaching absorber. Sufficient
details concerning the isomer shift standard should be included to facilitate interlabor-
atory comparison of data;
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8. Method of energy calibration (e.g., calibrated absorber, Michelson interferom-
eter, Moiré fringes, etc.);
9. An estimate of systematic and statistical errors of the quoted parameters.

B. NUMERICAL OR TABULATED DATA

Information collected and summarized in tabular form should include:

1. Chemical state of source matrix and absorber;

2. Temperature of source and absorber and the constancy of these parameters over
the length of the data acquisition period;

3. Values of the parameters required to characterize the features in the Mdssbauer
spectrum (given in mm/s or other appropriate units) with estimated errors (see below
the section on “Terminology, Symbols, and Units” for parameters used);

4. Isomer shift reference point with respect to which the positional parameter is
reported;

5. Observed line widths defined as the full-width at half-maximum peak-height or
other appropriate line width (e.g., line widths calculated by a transmission integral
computer fit, line widths of the single Lorentzian peaks when the spectrum is the
result of a sum of overlapping Lorentzian peaks, etc);

6. Line intensities or (relative) area of each component of the hyperfine interac-
tion spectrum observed, if pertinent.

C. FIGURES ILLUSTRATING SPECTRA

Scientific communications in which Mossbauer effect measurements constitute a
primary or significant source of experimental information should include an illustra-
tion of one spectrum (i.e., percent transmission or absorption or counting rate versus
an appropriate energy parameter) to indicate the quality of the data. Such figures
should include the following information:

1. A horizontal axis normally scaled in velocity (mm/s; channel number or
analyzer address values should not be used for this purpose);

2. A vertical axis normally scaled in terms of the effect magnitude, transmission
per scattering intensity, counts per channel, or related units; (2)

3. Statistical counting error limits indicated for at least one data point; (3)

4. Individual data points (rather than a smoothed curve alone) should be shown.
Computed fits should be indicated in such a way that they are clearly distinguished
from the experimental points.
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III. TERMINOLOGY, SYMBOLS, AND UNITS

If the units selected by the experimenter are not SI units, they should be defined in the text.

Suggested decimal

multiple of submultiple

SI Units for Definition and
Name Symbol SIUnit  Mossbauer data comments

Isomer Shift ) mls mm/s (=10"3m/s) Measure of the energy
difference between
the source (E ) and
the absorber (E ;)
transition. The
measured Doppler velocity
shift, 8, is related
to the energy difference
by E, — E; = Eyvlc
(where E, is the
Maossbauer gamma energy
and c is the speed of
light in a vacuum). (9-(5)

Nuclear/gyromagnetic ratio y T—1s71 The parameter that is
the proportionality
constant between the
nuclear moment and the
angular momentum. (©)
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III. TERMINOLOGY, SYMBOLS, AND UNITS (Cont.)

Name

Symbol

Suggested decimal
multiple of submultiple
SI Units for

SIUnit  Mossbauer data

Definition and
comments

Magnetic flux density

Magnetic hyperfine splitting

Components of the
magnetic hyperfine
interaction tensor

Nuclear quadrupole moment
(spectroscopic)

yHhB

AypAyA,

eQ

J mm/s(=10"3m/s)

J mm/s(=10"3m/s)

Cm?

Magnetic flux density
at the nucleus (from
experiment) in those
cases in which the
magnetic hyperfine
interaction can be
described by an effective
field. In other cases
the tensor components
of the magnetic hyperfine
interaction should be
reported if possible.

The energy difference
between two adjacent
levels that are the
results of the interaction
of the nuclear magnetic
dipole moment and the
magnetic flux density. )

Used when the magnetic
hyperfine interaction
is to be described__ by o
the Hamiltonian7 - 4 - 5.7

A parameter that
describes the effective
shape of the equivalent
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Electric field gradient (EFG)

tensor

Principal component of EFG -V
Quadrupole coupling constant e2qQ0/h
Asymmetry n
Line width

Natural line width Wo

V/m?

V /m?

m/s

m/s

MHz(= 10°Hz)

mm/s(=10"3m/s)

mm/s(=10"3m/s)

ellipsoid of nuclear

* charge distribution
Q>0 for aprolate (e.g.,
57Fe, 197Au)and Q < O
for an oblate (e.g.,
11980, 1297) nucleus.

A second-rank tensor
describing the electric
field gradient specified
bymand V,,.®

92V [0z2 = eq (e is the
proton charge, V. is
the largest component
of the diagonalized EFG).

Product of V,,/h and
the nuclear quadrupole
moment, eQ. 5

= (Ve — Vi)lVe..

Full width at half
maximum of the
observed resonance
line(s). ®

Theoretical value of
the full width at half
maximum, usually
calculated from lifetime
data.
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II. TERMINOLOGY, SYMBOLS, AND UNITS (Cont.)

Name

Suggested decimal
multiple of submultiple
SI Units for

Symbol SIUnit  Mossbauer data

Definition and
comments

Resonance effect magnitude

Recoil-free fraction

Mossbauer thickness

Resonance/cross section

Vibrational anisotropy

Iy

ao m

Em

The difference
in the transmitted or
scattered intensity at
resonance maximum and
off-resonance, relative
to the intensity off
resonance.

The fraction of all
gamma rays of the
Mossbauer transition
which are emitted (f;)
or absorbed (f,) without
recoil energy loss.(10)

The effective thickness
of a source (7) or an
absorber (7,) in the
optical path. (1D

The cross section for
resonant absorption of
the Mossbauer gamma
ray. (12)

‘When the vibrational
anisotropy tensor
((xzij )) is axially
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symmetric &,, = (1/X2)
((xﬁ ) — (x? )) where
(xf ) and (x} ) arethe
mean square vibrational
amplitudes of the Mdssbauer
nucleus parallel and
perpendicular to the
cylindrical symmetry

axis through the Mossbauer
atom and X is the
wavelength of the
Mossbauer radiation
divided by 27.
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FOOTNOTES

() If data are analyzed by computer, a brief description of the program should be given to identify the
algorithm used. The number of constraints should be specified (e.g., equal line widths or intensities,
etc.) and a measure of the goodness of fit should be indicated.

If measurements of very high accuracy are reported and the discussion of the reality of small effects is
an important part of the work, then the following items should be included:

a. the functional form and all parameters used in fitting (i.e., the constraints should be clearly

stated);

b. the treatment of the background (e.g., assumed energy independent, experimentally subtracted,

etc.);
. the relative weighting of abscissa and ordinate (e.g., equal weighting);

c

d. ameasure of the statistical reliability;

e. the number of replications and the agreement between these if applicable;
f

. an estimate of systematic errors as primary results.

@ Tt has become customary to display data obtained in transmission geometry with the resonance
maximum “down” and scattering data with the resonance maximum “up.” In either case, sufficient data
should be shown far enough from the resonance peaks to establish the nonresonant base line.

() In most instances (where the data are uncorrected counting resul]tsg, the standard deviation (i.e.,
the square root of the second moment of the distribution) is given by =N, where N is the number of
counts scaled per velocity point. For corrected data (i.e., when background or other nonresonant effects
are subtracted from the raw data), the propagated error should be computed by normal statistical methods
which are briefly described in the figure legend. Fiducial marks bracketing the data points to show the
magnitude of the standard deviation are often used in indicating the spread of the data.

() The center of a Mossbauer spectrum is defined as the Doppler velocity at which the resonance
maximum is (or would be) observed when all magnetic dipole, electric quadrupole, etc. hyperfine
interactions are (or would be) absent. The contribution of the second-order Doppler shift should be indi-
cated, if possible. The isomer shift is the sum of this term and the chemical isomer shift.

) The SI unit of energy for isomer shift, quadrupole-coupling constant, quadrupole splitting, and
line width is the Joule. The measured quantity is the velocity (m/s) which can be converted to the desired
energy units.

(®) The nuclear gyromagnetic ratio can be expressed in terms of the nuclear g factor (Landé factor) as
yh = guy where wy is called the nuclear magneton and is defined as uy = eh/2m,c (m, is the mass of
the proton). Another quantity that is often used is the nuclear magnetic moment (u) which is related to y
and g by u = yhl = guyI. The usual unit for pis puy, i.e., nuclear magnetons. Note that the units of
vh are JT™L,

() Tn the case of an isotropic interaction the symbol “a” isused (i.e.,a = A, = A, = A,).

® The sum V. + V,, + V, = O regardless of the choice of axes. In the absence of magnetic hyper-
fine interaction, principal axes are chosen so that the off-diagonal matrix elements vanish,

Vi =0(ij = x,z;i # j)and are defined such that | V| =| V,y | =| Vi | ,s0that0 <7 < L.
(EFG);; = —(82V/dx;0x), where x;,x; = x,y, or z.

©) This parameter is calculated from the relationship /o = [N(e) — N(0)]/N(%), where N(0) is the
counting (or transmission or scattering intensity) at the resonance maximum, and N () is the correspond-
ing rate at a velocity at which the resonance effect is negligible. If corrections for nonresonant gamma- or
X-rays, or other base line corrections have been made in evaluating /), these should be listed.

(0) The recoil-free fraction can be related to the expectation value of the mean square displacement
of the Mdssbauer atom by the relationship f = exp(— kz()c2 )) where k is the wave number of the
Mdssbauer gamma ray and x is the displacement taken along the optical axis.

(D) The ¢ parameter is usually calculated from the relationship t = n + o7 * IA, in which n is the
number of Méssbauer element atoms per unit area in the optical path, o is the cross section for recoilless
scattering, /A is the fractional abundance of the Mossbauer transition active nuclides, and f is the recoil-
free fraction (vide supra).
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(12) This parameter is usually calculated from the relationship
= (W2c22mEZ2(1 + 20 )(1 + 2171 + ap)~(Wol2W,),

where E. is the transition energy; W, is the absorber line width; 7, and / ¢ are the excited and ground-
state spins, respectively, and a7 is the total internal conversion coefficient of the Mossbauer transition.

10.
11.
12.

13.

15.

16.
17.

18.
19.
20.
21

22.

23.
24.
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