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The human body’s response to glucose and three physical models
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Three physical models of the human body’s response to a glucose challenge are presented from the
medical literature. Glucose tolerance is evaluated using kinematical techniques, an exponential-
decay analysis, and a damped harmonic-oscillator model. Fach treatment contains material
suitable as supplementary topics in physics courses, both introductory and intermediate.

I. INTRODUCTION

Medical topics can be very effective for stimulating the
premedical student’s interest in physics. This article illus-
trates how some medical research methods employed in the
study of the human body’s response to a glucose challenge
use the same techniques learned in physics courses. Three
treatments are given ranging from simple graphical analy-
sis to more advanced discussions involving differential
equations. The graphical approach is very suitable for a
supplemental topic in a noncalculus-based physics course
for life-science majors. The advanced treatment contains
mathematical methods encountered in intermediate me-
chanics. Such can be presented briefly to physics majors,
illustrating the power and scope of methods studied in
physics.

In Sec. II a brief description of the oral glucose tolerance
test (OGTT) is presented. Section III contains an analogy
comparing glucose-tolerance response to a simple kinemat-
ical problem. Graphical techniques are employed to arrive
at a proposed clinical index for the diagnosis of diabetes. In
Sec. IV amodel is discussed which approximates the body’s
response to an intravenous glucose challenge with an expo-
nential-decay curve. Section V reviews a model comparing
glucose-tolerance response to the oscillations of a damped
harmonic oscillator. Concluding remarks are given in Sec.
A28

IL. THE ORAL GLUCOSE TOLERANCE TEST
(OGTT)

The OGTT measures the body’s ability to respond to an
oral load of glucose after a 12-h fast. A baseline blood sam-
ple is taken in order to determine the fasting glucose con-
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centration. Then, the patient consumes a dose of glucose
(e.g., 50 or 100 g) and blood samples are taken a few times
during the next 2 or 3 h (e.g., at 30, 60, 90, and 120 min)."
Glucose concentrations are given in milligrams per decili-
ter (mg/dl); however, numerical values vary depending on
whether venous or capillary blood is taken, and whether
whole blood or plasma values are reported.

For normal glucose tolerance, glucose concentrations
are virtually reduced to the fasting or baseline level by the
end of 2 h after a glucose load. In cases of impaired glucose
tolerance, the glucose concentrations remain high for ex-
tended periods of time. Patients with diabetes mellitus reg-
ister high amounts of sugar in the blood due to insufficient
amounts of insulin, a hormone secreted by the pancreas for
the metabolism of carbohydrates.

There is no universal set of criteria for the diagnosis of
diabetes; although, severe cases are readily recognized. Ac-
cording to one set of guidelines, the National Diabetes
Data Group,” a fasting plasma glucose level reaching 140
mg/dl on more than one occasion is indicative of diabetes.
For fasting levels not so high, diabetes is present if two
blood samples, one taken at 2 h and one at a suitable point
before 2 h, reach 200 mg/dl on more than one occasion
(recommended oral dose is 75 g). ‘

The difficulty with suggested guidelines is evident in a
1975 study which compared six published methods. Each
set of criteria was employed to classify 340 subjects, repre-
sentative of people likely to be examined in a clinic special-
ized in diabetic detection.® The percentages of subjects di-
agnosed as diabetic ranged from as low as 18% using the
criteria of the European Study Group for Diabetes to as
high as 51% with the recommendations of the British Dia-
betic Association.

The difficulty in establishing a unique set of guidelines
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has generated considerable medical research in modeling
glucose-tolerance response. Three approaches discussed in
the following sections employ standard material encoun-
tered in physics: (1) graphical kinematic techniques, (2)
exponential decay, and (3) damped harmonic oscillations.

HI. GRAPHICAL METHODS

The simple graphical approach to the study of glucose
tolerance is analogous to the kinematical description of
moving objects introduced early in a basic course in phys-
ics. Figure 1 provides a graph indicating the speed of an
automobile as a function of time as it passes another car.
The smooth curve in Fig. 1 indicates the actual speed of the
car from moment to moment, while the dashed lines con-
necting the points at times 0, 30, 60, 90, and 120 s give an
approximate description.

The distance traveled by the car during the 120 s is given
by the area under the smooth curve (neglecting the effect of
switching lanes). This area can be approximated by the
area under the four dashed lines:

A=1(1/2)(a +2b+ 2c + 2d + e)t, (1)
where a = 80, b = 120, ¢ = 100, d = 85, e = 80 (units in
km/h), and r = 30, giving 4 = 3.21 km.

Figure 2, very similar to Fig. 1, is a plot of five values of
plasma glucose concentration taken from the normal
OGTT reported in Table I. The points are connected by
straight lines. The blood sugar level rises initially after the
glucose challenge at = 0 min. A short delay in rising is
due to gastrointestinal absorption time. The body responds
by secreting insulin to metabolize the glucose and bring
concentrations back dow to the fasting level.

Billewicz et al.,* have proposed a single geometric mea-
sure of an OGTT for use in clinical settings. The total area
is not suitable because the area under the fasting level is
such a large percentage of the total area. Small changes in
fasting levels have large effects on the total areas calculat-
ed. The incremental area, i.e., area above the fasting level,
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Fig. 1. Plot of speed versus time for a moving vehicle.
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Fig. 2. Plot of plasma glucose versus time from an oral glucose tolerance
test.

is a much better measure of the actual response to a glucose
challenge.*
Their index is

H=nI,(0-2h)/I,(0-1h), (2)

where n is the number of 15-min time intervals for the
curveto peak, I, (0-2 h) is the incremental area for the 2 h,
and 1, (0-1 h) is the incremental area for the first hour.

Good responses peak early and readily return to the fast-
ing level. In such cases, 7 is small and the bulk of the incre-
mental area occurs during the first hour. Both of these
characteristics produce low values of H for normal sub-
jects. Suggested interpretation of the H index is as follows:
H <5 is normal, S<H<Y is suspect, and H>10 is abnor-
mal.*

For the OGTT values reported in Table I and Fig. 2, the
time to peak is estimated to be 30 min; therefore, # is taken
to be 2. The numerical value for the index defined in Eq.
(2) is easily calculated: H =2(65t)/(50t) = 2.6, well
within the normal range. In Ref. 4, anomogram is given for
estimating » by fitting a parabola through the highest mea-
sured point and its neighbor on each side. However, phys-
ics students can be challenged to arrive at an improved
estimate for n analytically.

For the OGTT values in Table I, the parabola must pass
through the points (0,80), (30,120), and (60,100). Using
a time coordinate where 1 unit is 15 min, these three points
are (x;,¥,) = (0,80), (x,,y,) = (2,120), and (x;, y;)

= (4,100). One parabola, y=Ax>+ Bx + C, passes
through the three points. The maximum occurs at

Table L. Plasma glucose (PG) values from a normal oral glucose tolerance
test.

Time (min) 0 30 60 90 120
PG (mg/dl) 80 120 100 85 80
Michael J. Ruiz 642



Table I1. Plasma glucose values (mg/dl) from normal® (N) and diabetic®
(D) OGTT results, compared with the H index.

Time (min) Index

0 30 60 90 120 H H,

G.B. (N) 91 162 124 123 125 35 4.0
R.B. (N) 109 177 161 140 110 3.2 4.2
L.B. (N) 98 194 176 132 96 3.1 4.1
D.G. (N) 94 157 141 109 102 3.0 3.9
R.H. (N) 98 152 136 115 113 32 4.1
D.L. (N) 89 122 78 108 106 3.7 3.7
AM. (D) 204 332 380 408 368 164 159
F.R. (D) 260 308 372 400 444 302 302
D.F. (D) 179 244 248 292 276 178 192
EM. (D) 185 256 288 320 360 259 259
Al (D) 280 354 432 495 487 218 246
ET. (D) 204 256 309 352 343 215 238

x = — B /24 = n, from setting dy/dx = 0. The algebra
simplifies if coordinates are chosen with the vertical axis
passing through the center point, shifting the time coordi-
nate back afterwards. One readily finds n = x, + ¢, where
€= (y;—y,)/(2y, —y, — y3). For the case depicted in
Fig. 2, n = 2.33, which is larger than the previous estimate
of n = 2. The H index, using the estimate of » from the
parabolic fit, is H, = 3.0, somewhat higher than the value
2.6 found earlier.

Table II contains OGTT results for six normal® and six
diabetic® subjects (glucose load of 100 g). The H index is
listed for each case, along with the index value H, using a
parabolic fit through the highest point and its immediate
neighbors. In calculating H, if glucose concentrations dip
below the fasting level, values are replaced by the fasting
value. When the last value is the maximum, » is taken to be
8.

In some cases, considerable error is induced due to sam-
pling blood at intervals of 30 min. For example, H, for
R.B. is lowered from 4.2 to 2.4 when 15-min blood samples
are taken (see Ref. 5 for 15-min values for each of the nor-
mal subjects listed in Table IT1). However in practice, blood
sampling every 15 min is uncomfortable and time consum-
ing.

An advantage of the H index is its relative insensitivity to
variations in laboratory testing. For example, the conver-
sion from whole venous blood glucose to plasma glucose
involves a linear transformation.® It is a simple student ex-
ercise to show that the H index defined by Eq. (2) is invar-
iant under a transformation of the form G’ = mG + b,
where G and G’ are glucose concentrations (m and b are
constants).

IV. EXPONENTIAL DECAY

The intravenous glucose tolerance test (IGTT) involves
the direct injection of glucose into the blood stream. There
is very little delay time in reaching the peak glucose con-
centration as the gastrointestinal track is avoided. When
the initial time is defined at peak concentration, the plot of
decreasing glucose excess’ (incremental values above the
fasting level) as a function of time approximates a decaying
exponential. Figure 3 is a plot of glucose excess as a func-
tion of time after a rapid intravenous glucose injection.®
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Fig. 3. Plot of glucose excess versus time from an intravenous glucose
tolerance test. Reproduced from Ref. 8 by copyright permission of The
American Society for Clinical Investigation, New York.

The simple model suggested empirically from the work
of Amatuzio ez al.® indicates that the disappearance of glu-
cose is approximately proportional to the glucose excess
present, i.e.,

dg(t)/dt = — kg(1), (3)

where g(¢) is the difference between the glucose concentra-
tion G(¢) and the fasting value G, and & is a constant. The
solution to Eq. (3) is the familiar decay law encountered in
studies of radioactivity,

g(1) =g(0)e™ X, (4)

where g(0) is the initial peak excess due to the sudden
glucose injection.

The decay constant k can be determined from the data
by a least-squares fit for a plot of — In[g(#)/g(0)] vs ¢.
Table III lists some IGTT data for normal (N), mildly
diabetic (MD), and severely diabetic (SD) subjects, all of
which were diagnosed previous to the decay studies by oth-
er means. The intravenous load was 25 g and the time ¢ =0
was taken 4 min after injection. Blood samples were ob-
tained from an ear lobe.®

The decay constant ¥ has been multiplied by 100 and
reported as a removal rate R = 100k (%/min) in Table
II1. The percentage is relative to the amount of glucose
present at any given instant, which decreases from moment
to moment according to Eq. (4). The correlation coeffi-
cient r for the fits ranges from 0.94 to 1.00, with a typical
value of 0.98.

In Table I1I, the normal subjects have an average remov-
al rate of Ry = 4 %/min, the mild diabetics average Ry,p
=2 %/min, and the severe diabetics have a mean Rgp
= 1 %/min. However, difficulties arise when R is used as a
clinical index due to the spread in values found in each
group. For example, J.U. (SD), previously classified as

Michael J. Ruiz 643



Table II1. Excess glucose values (mg/dl) during an IGTT for subjects®
previously diagnosed as normal (N), mildly diabetic (MD), and severely
diabetic (SD); and removal rates R(%/min).

R

Time (min) (% /min)

0 8 16 24 32 40 48 56 64

W.B. (N) 180 138 105 85 65 52 40 29 24 3.2
R.C. (N) 184 149 103 79 68 48 38 15 15 4.0
FM. (N) 203 147 103 61 55 30 15 6 6 5.9
ES. (N) 178 140 107 87 68 43 42 23 17 3.6
K.N. (N) 200 150 109 95 82 71 64 55 41 2.2
B.D. (N) 140 93 74 48 29 14 19 4-4 5.7
O.D. (MD) 187 168 142 123 105 90 71 63 38 2.3
W. (MD) 149 134 109 100 88 81 66 48 42 1.9
EJ.(MD) 170 138 119 108 90 83 73 53 48 1.9
M. (MD) 153 138 105 98 85 79 79 46 28 2.3
M.B. (MD) 179 134 117 100 88 73 66 52 42 2.1
FS. (MD) 125109 99 83 78 73 67 61 55 1.2
J.U. (SD) 210 160 124 116 110 106 84 70 62 1.7
G.E. (SD) 152 116 114 102 104 78 76 74 66 1.2
M.C. (SD) 200 154 124 124 104 104 104 82 82 1.2
B.P. (SD) 161 152 146 132 122 108 109 102 102 0.8
AN.(SD) 133 99 97 90 75 77 66 59 54 1.3
E.W. (SD) 65" 73 70 67 64 62 65 65° 62° 0.5

*Discarded in calculating R.

severely diabetic, has a value for R as high as 1.7 %/min
(very close to the mildly diabetic average of 2 %/min). As
another example, K.N. (N), a normal subject, has a value
of R (2.2 %/min) in the mildly diabetic range.

The use of a decay or removal rate for evaluating re-
sponse is not very different from using total incremental
area. The total area under the glucose-excess curve is

4 =Jw g(t)dr =g(0) fw e~ Mdr =g(0)/k. (5)
(o] 0

The removal parameter, k = g(0)/A4, is inversely propor-
tional to the total incremental area.

V. DAMPED HARMONIC OSCILLATIONS

From Tables II and III it is evident that glucose levels
can drop below the fasting level after a glucose challenge.
Figure 4 illustrates oscillations in normal response that can
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Fig. 4. A normal blood-glucose-response curve, illustrating damped har-
monic oscillations. Reproduced from Ref. 9 by copyright permission of
Georg Thieme Verlag, Stuttgart, West Germany.
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be observed over time intervals of 3 h.® A simplified version
of the harmonic-oscillator model for the OGTT proposed
by Ackerman ez al.'? is presented below.

In Sec. IV it was assumed that the rate of change in
glucose exess is proportional to the amount of excess glu-
cose present in the blood. A more detailed model incorpo-
rates the excess amount of insulin hormone in the blood
h(t) and an external source term S(¢). Therefore, Eq. (3)
is replaced by

dg(t)/dt = — k, g(t) — k,h(r) + S(1), (6)

where &, and &, are constants.
Similarly, the rate of change in excess insulin hormone
depends on the amount of insulin and glucose present,

dh(2)/dt = —kh(t) + k,g(2), N

where k, and k, are constants. Note the plus sign in Eq. (7)
for the glucose term since insulin production is positive
when glucose excess is present. The insulin parameter /()
can be eliminated from Egs. (6) and (7), resulting in a
differential equation for g(z),

d?g(t)/dt? + 2pdg(t)/dt + v} g(t) =£(1), (8)

where B = (k,+k;)/2, o} =kk,+ kk,, and f(t)
= k,S(t) +dS(1)/dt

After a 12-h fast, the system is in equilibrium. The sud-
den administration of an oral load can be approximated by
a rapidly rising source function S(z) at z = 0, which then
gradually drops off. The time derivative of the source func-
tion at ¢ = 0 can be taken to be a delta function, dS(t)/
dt = ab(t), where a is a constant with suitable units. Ap-
proximating f(¢) by this dominant contribution, '’ the solu-
tion to (8) is of the form!!

g(t) = de #sinwyt, (9)

where @? =w} —fB°% The glucose concentration
G(t) = G + g(1) is pictured in Fig. 4, a damped oscilla-
tory function offset by the baseline fasting level Gj.

After detailed analysis, Ackerman et al.'® suggest w, as
the best parameter in evaluating responses, and refer to w?
as the responsivity. For normal subjects investigated in
Ref. 10 the characteristic time T, = 27/w, was less than 4
h, while for diabetics 7, extended beyond 4 h. Note that the
observed period in Fig. 4is 7|, = 27/w,, and not T,

In order for a curve to be diagnosed as abnormal based
on low values of @} = w7 + B2 (large Ty), both w, and B
must be low.'° This means that abnormal responses will
have both long observed periods 7', and poor damping.
Overdamped responses (@, </3, ®, imaginary) with 8
small can be found in extreme diabetic cases where the
curve hangs high for hours."?

Fitting the data of an OGTT with damped oscillatory
functions is not easily accomplished. Therefore, it is diffi-
cult to extract the relevant parameters from the data. For
this reason, the harmonic-oscillator model has not proved
practical for clinical application.*

VI. CONCLUDING REMARKS

This article has discussed three physical analogies which
have aided medical researchers in understanding the hu-
man body’s response to a glucose challenge. While each
model may appear different, they are all quite similar. The
incremental area of the kinematical approach is closely re-
lated to the decay constant in the exponential-decay model
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(see Sec. IV). The decay or removal constant, related to
the half-life of the decay, represents an inverse characteris-
tic time of the response. In the harmonic-oscillator model,
a characteristic time is used to evaluate responses (see Sec.
V).

These medical models include material that can be readi-
ly incorporated into physics courses, some of which is more
suitable at the introductory level, other at more advanced
levels. The author successfully introduced the kinematical
treatment during the second week of an introductory one-
semester physics course for nursing students. The premedi-
cal student is likely to acquire an early appreciation for
physics when it becomes evident that techniques learned
after only one or two weeks enable one to read a paper*
published in a medical journal. Similarly, intermediate me-
chanics students can realize the potential that theoretical
methods encountered in physics have in their application
across disciplines.
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Using videotapes to study underdamped motion of a pendulum:

A laboratory project
Margaret Stautberg Greenwood

Department of Physics, DePaul University, Chicago, 1llinois 60614

(Received 24 June 1986; accepted for publication 19 September 1986)

Using a video camera with a stopwatch feature and a VCR enabled my class to study the effects of
air resistance acting on the following pendulum bobs: Ping-Pong ball, styrofoam spheres, and a
brass sphere. We measured the maximum return angle on each swing for a pendulum (L = 1 m)
released from an angle of 70°. The students wrote a computer program to analyze the data,
assuming that the force of air resistance equals cr°v®, where ¢ = 0.87 kg/m>. We found that ¢ was
larger than this and extracted the force of air resistance acting on the string. As part of the lab
project, we also measured the period and position-versus-time when a pendulum with a brass bob

was released at a large angle.

L. INTRODUCTION

My attention was drawn to this subject by an article by
M. F. MclInerney.' He studied the underdamped motion of
a pendulum by measuring the speed of a polystyrene pen-
dulum bob as it passed through a photogate and observed
the decrease in speed on each swing due to air resistance.
Recently I reported on a laboratory project™ for my soph-
omore intermediate mechanics class in which we video-
taped the overdamped motion of a mass at the end of a
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spring immersed in glycerin. It seemed that videotaping
could be used profitably to observe the motion of a pendu-
lum and be the basis for another laboratory project. These
experiments were sufficiently complex so that the students
would have to write their own computer programs, one
important goal for the project. This paper describes the
following series of experiments that were performed by my
class:

(1) Measuring the period of a pendulum released with a
large amplitude.
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