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Abstract 

Harmonics arise naturally from the resonances in strings and pipes. A video demonstration (Ruiz 

2016 YouTube: Tuba Harmonics https://youtu.be/souhEzOP9c4) is provided where a tubist 

(coauthor Holmes) produces a phenomenal 24 harmonics using a single tuba pipe length by 

controlling the buzz of his lips. The frequencies of the harmonics, measured with the free 

software program Audacity, fall excellently on a linear fit using a spreadsheet. The skillful 

musical production of so many harmonics with a fixed pipe length is an extraordinary illustration 

of physics. 

__________________________________________________________________________ 

The harmonic series 

Students are introduced to harmonics in physics when they study standing waves on strings and 

in pipes. For strings and open pipes, the standing waves form the harmonic series. The frequency 

of the nth harmonic in the series is given by 

1nf n f= ,            (1) 

with n = 1, 2, 3, …. The frequency 1f  is the frequency of the first harmonic, also called the 

fundamental. Harmonics where 2n   are called overtones, the first overtone being n = 2, the 

second overtone at n = 3, and so on. For strings and open pipes, the wavelength of the nth 
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harmonic is 
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n
 = , where L  is the length of the string or open pipe. Substituting the 

wavelength into the wave relation v f= , equation (1) can also be written as 
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For standing waves in closed pipes, 
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= , where m is odd, i.e. the resonances 

are odd-numbered harmonics. Note that the fundamental wavelength ( 4L ) for a closed pipe of 

length L  is twice the fundamental wavelength ( 2L ) for an open pipe of the same length ( L ). If a 

student taps an open pipe while another student places a hand over one end, the frequency heard 

halves since the closed-pipe wavelength is twice that of the open pipe. An open organ pipe can 

be capped to achieve a lower octave1 without having to double the length of the open pipe, thus 

saving vertical space. 

 
1 Two frequencies form the musical interval of an octave when their frequency ratio is 2:1 or 1:2. 



Approximate locations of harmonics on the keyboard 

Figure 1 shows the first 16 pitches in the harmonic series starting on C1 = 32.7 Hz, the lowest C 

on the piano. The frequency of the lowest note on the piano is A0 = 27.5 Hz exactly.2 The 

frequency for the note one semitone3 higher can be found by multiplying  27.5 by the 12th root 

of 2, giving 1227.5 2 27.5 1.059... 29.1Hz =  = . Multiplying by the 12th root of 2 for each rising 

semitone insures that each higher octave (12 semitones) is exactly double4 the frequency in equal 

temperament. An instructive problem is to calculate the frequency of C1 = 32.7 Hz by 

multiplying A0 = 27.5 Hz (the lowest note on the piano) three times with the 12th root of 2. 

Figure 1. Approximate pitch locations of the first 16 harmonics starting with harmonic 1 on C1. 

In each case, the cents (¢) value reveals the deviation from equal-tempered tuning, where a value 

of 100¢ indicates a semitone. 

 
2 Assuming equal-tempered tuning with A4 = 440.0 Hz (exactly). 
3 The interval formed by moving from any note to its adjacent neighbor. 
4 Be careful in discussing the piano with your students. The nonlinearity of the stiff piano strings 

requires tuning each octave slightly higher than a doubled frequency to avoid beats between the 

first overtone of the lower octave (e.g. C1) with the fundamental of the higher octave (C2). 



 The deviation   in pitch for each harmonic relative to the nearest matched key in figure 

1 is given in cents (¢), where a value of 100¢ equals a semitone. A cent is defined as the 1200th 

root of  2 so that 1200 cents make up one octave, 100 cents for each of the 12 semitones. The 

number of cents between the interval defined by a lower frequency 1f  and higher frequency 2f  

is given by [2] 
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cents 1200 log 3986 log
f f
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=  =  .   (3) 

As an example for one of the calculations in figure 1, consider the frequency of the sixth 

harmonic 6 16 6 32.7Hz 196.2Hzf f=  =  =  compared to the nearby note 3 196.0HzG = . Using 

equation (3), the interval defining the deviation in cents is  
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Tubas are designed with valve branches so that several harmonic series can be utilized 

with their associated pipe lengths in order to match the equal-tempered scale. The most refined 

brass players maintain supple lips with firmly anchored corners so that air speed is the 

predominant frequency determinant. Breath and facial muscle control produce the lip vibrations 

that are applied to the mouthpiece. The instrument resonates most when the frequency of lip 

vibration matches the frequency of the instrument's natural harmonic. Tubists can also tweak 

individual harmonic resonances shown in figure 1 with deviations of 14 cents or less to bring 

those pitches in line with equal temperament. However, for our experimental demonstration, the 

tubist allows each resonance for a fixed pipe length to fall as closely as possible to its natural 

resonance frequency 1nf n f= . 

Controlling the general mouth formation (embouchure), lip vibration, lip tension, and the 

speed of air passing through the lips, the tubist is able to drive the fixed-length pipe into its many 



resonances. The frequencies of the harmonics obtained in this way are described well by figure 

1, which indicates how close each harmonic is to an actual note of the equal-tempered scale. 

Basic tuba pipe physics 

The tuba is the ideal instrument for obtaining many harmonics because the musician can start 

with a very low pitch for the first harmonic. The CC Tuba is shown in figure 2 with coauthor and 

tubist Bud Holmes. The CC Tuba has a minimum length of 16.0 ft (4.88 m). This minimum 

length is the default length if no valves are pressed. Pressing the valves adds to the default length 

by including valve branches in the pipe path. 

Figure 2. Coauthor and tubist Bud Holmes holding a CC Tuba. 

 The tuba consists of a mouthpiece (cup and tapered back bore), a mouthpipe (also with a 

taper), a main conical bore, and a flaring bell. [3] The mouthpiece serves as a closed end and the 

flaring bell is an open end. An interesting property of a conical pipe forming a complete cone is 

that all harmonics are present. [4] Consider first a closed cylindrical pipe of length L . The 



resonance pitches, as discussed earlier, are given by 
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= , where  1,3,5...m= , odd numbers. 

Now imagine transforming the cylinder into a cone. The resulting frequencies become 
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where 1, 2,3...n = , the harmonics for an open pipe of the same length L . [4] An elegant 

mathematical derivation of these results along with a beautiful graph showing the transformation 

of the closed-pipe resonances to the conical case was published by Ayers, Eliason, and 

Mahgerefteh in 1985 [5]. 

For interesting discussions of the tuba’s cousins, the trumpet and trombone, both of 

which have considerable lengths of cylindrical tubing [3], see two papers by LoPresto. [6,7] 

With the trumpet and trombone, the additions of the mouthpiece (with mouthpipe) and bell flare 

transform the closed-pipe harmonics to almost the same spectrum as an equivalent cone of the 

same length [8]. 

Fundamental pitches on the tuba 

Fundamentals, also called pedal tones, are accessible on the tuba as true natural harmonics; 

however, they are not commonly called for in orchestral scores. The tubist at times can encounter 

the fundamental, e.g. in some 20th century orchestral music. Typically, the tubist plays one of the 

overtones for each pipe length. [9]  

 The length of the CC tuba without pressing the valves is 16.0 ft (4.88 m). The 

corresponding fundamental falls on the note C1 = 32.7 Hz, illustrated in figure 1 and calculated 

earlier from A0 = 27.5 Hz. The effective length 'L  of the tuba can be inferred by combining 

v f=  and 2 'L =  for the conical pipe to obtain the equation 

'
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v
L

f
= .         (5) 



Using equation (5) with 1345 m sv −=   and  32.7 Hzf = , gives an effective length 

1345 m s
' 5.28 m

2 32.7 Hz
L

−
= =


,    (6) 

which is about 8% greater than the physical length 4.88 mL = . The discrepancy is due to the 

end correction at the open end and the fact that the tuba is not perfectly conical. A similar 

situation is encountered with the trombone, where an end correction and flare effect need to be 

taken into account. [7] 

 The spectrum of the fundamental played on a CC Tuba is very rich. When the 

fundamental is played, many harmonics are observed in the frequency spectrum. See figure 3 for 

the frequencies of some of these harmonics, with H1, H2, H4, H8, and H16 labeled with their 

corresponding octaves on the keyboard. These frequencies were measured by the free audio 

software program Audacity. [10]  Note that the measured value for the fundamental frequency is 

33 Hz, in good agreement with the actual value C1 = 32.7 Hz. 



Figure 3. Frequency spectrum in Audacity for the fundamental on the CC tuba playing the lowest 

C, which is C1 = 32.7 Hz. 

 

 It is interesting to apply a linear best fit for the data in figure 3. The result using an Excel 

spreadsheet is shown in figure 4. The fit is excellent and supplies an even better experimental 

value for the fundamental arises, 32.8 Hz as compared with the expected C1 = 32.7 Hz. 

Students can be encouraged to record their own sounds from musical instruments and 

investigate spectra. The audio source for figure 3 comes from our tuba video [1] (coauthor 

Holmes) in a large living room (home of coauthor Ruiz). A video editing program was used to 

separate the audio from the video for spectral analysis with the free program Audacity [10] to 

produce figure 3. Alternatively, the built-in microphone of a portable computer can be used to 

record sounds with available software such as Apple’s GarageBand [11]. There are also apps that 

allow students to record and analyze sounds using their smartphones and tablet PCs [12]. 

 



 
 

Figure 4. Best fit for the first 16 harmonics in the spectrum of the 32.7 Hz CC tuba fundamental, 

giving an experimental value of 32.8 Hz for the fundamental. 

 

Playing 16 harmonics on a CC tuba with no valves pressed 

When no valves are pressed, the tuba’s length is given by the main bugle section without adding 

any of the valve branches. For the CC tuba this length is 16.0 ft (4.88 m). The tubist in the video 

of reference 1, with skillful buzzing of the lips, plays 16 harmonics with this fixed main bugle 

section of the tuba. Therefore, the fundamental starts on C1 = 32.7 Hz. 

Since the harmonics in general do not fall perfectly on keyboard frequencies as discussed 

earlier and shown in figure 1, tubists use valve branches and embouchure to match equal-

tempered tones. The tubist in the video did not try to obtain equal-tempered tones. Instead, the 

tubist aimed for the natural harmonic resonance of the tuba in each case. The tubist quickly 

found the sweet spot, i.e. where the tuba responded with its most sympathetic vibration, for each 

harmonic. Theory predicts that these natural harmonics follow 1nf n f=  of equation (1). 



After quickly finding a natural harmonic, the tubist sustained the pitch as steady as 

possible. He then went on to promptly locate the next harmonic and so on. The result is plotted in 

figure 5 where the best fit is made. Note the nice correlation with the theoretical equation 

32.7nf n=  for the minimum length of 16.0 ft (4.88 m) of the CC tuba. 

 

Figure 5. Best fit for the first 16 harmonics individually played on the CC tuba with the fixed 

minimum bugle length of 4.88 m, which corresponds to a fundamental of C1 = 32.7 Hz. 

 

 

Playing 24 harmonics on the F tuba with all 5 valves pressed 

The F tuba, shown in figure 6, has a base length equal to 12.0 ft (3.66 m). The theoretical 

fundamental frequency for this base length is predicted from equation (2), 
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But a discrepancy is expected since the tuba is not an ideal cone and there is the end correction 

as discussed earlier. The base length of the F tuba is designed to obtain the pitch F1 = 43.65 Hz. 



Checking the discrepancy between 43.65 Hz and 47.13 Hz, it is found to be 8% as noted earlier 

with the CC tuba. 

 

Figure 6. Coauthor and tubist Bud Holmes holding an F tuba and pressing all five values to 

obtain the maximum tuba pipe length. 

 

An instructive calculation for the student is to determine the keyboard frequency F1 = 

43.65 Hz from the nearest A. Since A4 = 440 Hz, one can easily keep dividing by 2 (dropping 

octaves) to reach A1 = 55 Hz. Then from the letter designations in figure 1, it is apparent that one 

needs to divide by the 12th root of 2 a total of four times to drop down the 4 semitones to arrive 

at F1 = 43.65 Hz. 

To obtain the largest number of harmonics on the tuba it is best to start with as low a 

frequency as possible. The longest pipe length is desired. When all five valves are pressed, all 

valve pipe sections are added to the base length. The five valve branches take the pitch down 11 

semitones, almost an octave. The result is the incredibly low F#0, three semitones below the 

lowest note on the piano. A quick way to determine the frequency of F#0 is to first drop down an 



octave from F1 = 43.65 Hz to F0 = 43.65 Hz / 2 = 21.83 Hz. Then move up a semitone to arrive at 

F#0 = 21.83 · 1.059 = 23.1 Hz. Starting with the lowest possible pitch gives the tubist much 

frequency space to move up the harmonic series achieving the most resonances. 

The tubist in our video abstract [1] attains 24 harmonics for F#0 = 23.1 Hz. The first 20 of 

these harmonics are fitted with the best linear fit in figure 7. The last four harmonics, shown in 

red, are not used since these frequencies are extremely difficult to hit, thus introducing 

considerable uncertainty. Note how the last four harmonics drift slightly upward and away from 

the best fit. In musical terms, these pitches are getting sharper and sharper. The equation for the 

fit, taking n = 1, gives a measured fundamental 1 23.841 0.8263 23.0 Hzf = − = for the F#0 = 23.1 

Hz note. 

 

Figure 7. Best fit for the first 20 harmonics individually played on the F tuba with its fixed 

maximum pipe length, corresponding to a fundament F#0 = 23.1 Hz. Harmonics 21 to 24 (the last 

four data points drifting upward) were not included in the fit due to the extreme difficulty in 

achieving these. 

 



The CC tuba could have been used with pressed valves to produce more than the 16 

harmonics shown earlier in figure 5. However, the F tuba was introduced because the F tuba is 

smaller in length. The shorter minimum bugle section is 12 ft (3.66 m) rather than the 16 ft (4.88 

m) of the CC tuba.  Less energy is required on the part of the tubist to drive the shorter system 

into its resonances. Using less energy, the tubist can more precisely sustain the harmonics. 

Therefore, the many harmonics played sound cleaner, resulting in better recorded data for 

physics analysis. 

 

Conclusion 

The harmonic series naturally appears when teachers introduce students to waves on strings and 

in pipes. The formula for the harmonic series 1nf n f= , equation (1), is all the student needs to 

know in order to appreciate the basic physics of the tuba video of harmonics. [1] Before showing 

the video, the teacher can ask students how many harmonics do they think can be performed on a 

bugle or pipe of fixed length? The discussion can begin with songs composed using harmonics, 

which songs were the only ones bugle players could play before the arrival of valves (or the slide 

of a trombone). As an example, the melody Taps employs only four harmonics, namely, 

harmonics H3, H4, H5, and H6. 

The first 4 notes in the opening theme to Also sprach Zarathustra by Richard Strauss 

(1896) dramatically uses harmonics H2, H3, H4, and H5. Students will most likely know this 

theme from Stanley Kubrick’s movie 2001: A Space Odyssey (1968), screenplay by Kubrick and 

science fiction author Arthur C. Clarke. The first four notes of the theme can be achieved by 

whirling the flexible toy corrugated tube. [13] Energetic students might go beyond to obtain 5 or 

6 harmonics twirling the toy tube. After this initial discussion, asking students again about a 



realistic number of harmonics achievable on a pipe with fixed length will most likely lead to 

estimates lower than 10. 

Students will not imagine that 16 harmonics can be produced with a pipe of fixed length. 

The performance of 24 harmonics on the F tuba will astound them.  To enable the teacher to 

build the suspense, we have prepared video excerpts [14, 15] from our video abstract [1] so that 

your students can count the harmonics without knowing in advance how many harmonics will be 

obtained with the CC tuba [14] and the F tuba [15]. 

The tuba is such a cool instrument for achieving many harmonics because the starting 

pitch is so low. With the F tuba, a tubist can begin with the incredibly low frequency of 24 Hz, 

lower than the lowest note on the piano. Hearing a fundamental pitch near the lower threshold of 

human hearing is in itself an interesting physics demonstration. The topic of tuba harmonics is 

rich in physics, the mathematics of logarithms, and musical tones. Such an interdisciplinary 

demonstration will appeal to many students. 
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