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Abstract 

Costume jewelry beads are employed to demonstrate how a beam of beads is able to transform 

into a simple pendulum (single bead) where the pendulum length remains constant throughout. 

These beads are common and inexpensive for instructors, as well as attractive and exciting for 

students. Beads are removed from the top, keeping the same pendulum length until a single 

bead remains. The experimental data deviates about 2% from an ideal theoretical model for the 

extreme cases of the simple pendulum and rigid rod. Factors leading to the small discrepancies 

are discussed. This engaging experiment is demonstrated with an accompanying video (Hawes 

and Ruiz 2018 Video: Fun with swinging beads http://mjtruiz.com/ped/beads/).  

Introduction 

The pendulum is an important topic covered in introductory physics [1-2]. Papers continue to 

be written to help teachers communicate pendulum motion to their students in more effective 

and engaging ways [3-6]. For this paper, attractive and inexpensive jewelry beads were used to 

make three types of pendulums: a complete beam of beads on a string, a pendulum with a 

column of beads in only the lower portion of the string, and the simple pendulum (one bead 
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attached at the end of the string). The total length of each type of pendulum was held constant 

during each experiment with a given set of beads. When doing a series of experiments with a 

specific type of beads, the fixed length was determined by how many beads of that type were 

available. See figure 1 for three kinds of beads.  

 

Figure 1. Coauthor Chloe Hawes with three types of beads. For each case, the experiment 
started with beads stacked from the bottom up to the pivot point with a very small space near 
the pivot to allow for free swinging. Beads were gradually removed from the top, keeping the 
total length of the pendulum constant for each series of experiments.  

 

The left case in figure 1 is a beam of colored beads with the configuration for the 

beginning of the experiment. Beads were then removed a few at a time from the top until the 

last bead was reached - the simple pendulum. The pendulum was hung at the same point on 

the string each time so that the total pendulum length remained constant. The wooden blocks 

in the middle pendulum illustrate an experiment in progress for cubes, where some of the 



blocks have been removed from the top. For pendulum at the far right, removing three beads 

will result in the last measurement, determining the period of the simple pendulum.  

The model 

Students should understand the physical pendulum formula 
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is the acceleration due to gravity [2-4]. They should also know moments of inertia for some 

objects such as 2
I ml  for a point mass a distance l  from the pivot, 22

5
cm

I mr  for a sphere 

(uniform mass m , radius r ) about its centre of mass [7-8], and 21

3
beam

I ml  for a rigid beam 

(uniform mass m  and length l ) swinging by its end [2,4]. Finally, students need to know the 

parallel axis theorem, also referred to as Steiner's theorem, in order to calculate the moment of 

inertia for an object displaced by a distance d  from its centre of mass. The parallel axis 

theorem is given by 
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where m  is the mass of the object, 
cm

I  is the moment of inertia about its centre of mass, and 

d  is the displacement of the object from its centre of mass [8]. The parallel axis theorem 

provides an easy way to calculate the moment of inertia I  about an arbitrary axis located a 

distance d  from its centre of mass. 

 The model used for our experiment assumes rigid connections between the beads. See 



figure 2 for a diagram showing three beads. Taking the beads to be spheres with uniform mass 

m  and radius r , the moment of inertia of each bead about its centre of mass is 22

5
cm

I mr . 

For the cubes 2

cm
I mr  may be used where   is a coefficient less than 1, m  is the mass of the 

cube, and 2r  is the side of the cube. As will be seen, the precise shape of the small bead hardly 

affects the theoretical predictions.  

The parallel axis theorem is employed to find the moment of inertia for each bead from 

the pivot point. The moments of inertia are summed to obtain the total moment of inertia 

pivot
I . The moment of inertia is written down in equation (3) for n  beads using figure 2 as a 

guide. 

 

Figure 2. Model for beads forming a physical pendulum where beads are in the lower section of 
the pendulum and no beads are in the upper section. 
 



The total moment of inertia for n  beads is 
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Rearranging the terms leads to 

       
2 2 2 2 2 2 22

2 [1 3 5 ... (2 1)] [1 3 5 ... (2 1) ]
5

pivotI n mr mnL mrL n mr n            .    (4) 

Note that no calculus is needed for this theoretical derivation. Rather, students have a chance 

to work with the mathematics of series [9]. The first series is the sum of the first n  odd integers 

[10], 
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The second series is the sum of the first n  odd integers squared [10], 
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The distance from the pivot to the centre of mass is cm
L L nr  . The total length L  is equal 

to the maximum number of beads N  (that reach to the very top of the string) multiplied by the 

diameter of a single bead: 2L rN . The total mass of the beads is given by M nm . 

Substituting these relations into the physical pendulum formula equation (1) leads to  

  

2 2 22 1
2 (2 1)(2 1)

5 32
( )

Mr ML MrLn Mr n n

T
Mg L nr



    




,   (7) 



which simplifies to 
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To check equation (8) for the limiting case of the simple pendulum, set 1n  . The result 

is 

    
2

2 ( )
2

5 ( )

r L r
T

g L r g



 


.        (9) 

Since 2 200L Nr r r   , the first term under the radical sign can be neglected and equation 

(9) reduces to the case for the simple pendulum 
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where l L r  , the length from the pivot to the centre of the single bead at the end of the 

string. 

 To check equation (8) at the other extreme, set n N , the maximum number of beads. 

Equation (8) then becomes 
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Using 2L Nr , neglecting the relatively very small 
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which is the period for a rigid beam of length L  [2,4]. The experiment reveals the 

transformation of a pendulum beam into the simple pendulum as beads are gradually removed. 

The experiment 

To start the experiment, the beads were strung on a string still attached to the spool. The 

chosen string was of a light colour, so a mark could be made at the top of the beads. If enough 

beads were available, they were strung to a length as close as possible to a meter. See figure 3 

for photos of the preparation with two options in securing the last bead. 

 

 
 
 
 
 
 
 
 
 
 

Figure 3. (a) The string attached to the last bead with a loop. Figure (b) The string attached to 
the last bead with a knot tied on the bottom.  
 

The string was then hung at a point with a coin’s width between the top bead and the 

pivot point of attachment. The top of the string was marked as close as possible to the 

attachment point to ensure that the string was replaced at the same place each time, after the 

process of removing beads. Two important parameters are the constant total length for the 

pendulum and the average diameter of each bead. The total length of the pendulum was 

measured with a meter stick. The average diameter of a bead was found by subtracting the 

small coin width from the pendulum length and dividing by the total number of beads. 

The bottom of the pendulum was pulled to a small angle. Small angles of oscillation are 

important since then the pendulum can be considered to undergo simple harmonic motion, 



which is assumed in the derivation of the physics formulas. At times wave motion was observed 

along the vertical extent of the pendulum when there were many beads. The waves were due 

to the flexibility of the stacked bead array. Measurement of the period was postponed until 

these waves decreased significantly. In a later section, differences between the ideal rigid beam 

model and flexible string of beads will be addressed. Time was measured for 20 complete 

swings and this time was divided by the number of swings to arrive at the period for the 

oscillation. When timing, it is helpful to sway or move with the pendulum to better anticipate 

the end of each cycle and therefore stop the timer more precisely at the end of the swings. The 

period was recorded and then a group of beads was removed from the string. The experiment 

was then repeated until there was one bead left on the string. The data was entered into a 

spreadsheet along with the ideal theoretical results for the rigid bead array. A comparison 

between experimental and rigid-bead theoretical values is given in the next section. 

The results 

The results for the small colored beads appearing in figure 1 are plotted in figure 4 where the 

vertical axis is the period and the horizontal axis is the number of beads. In this experiment, the 

maximum number of beads was 105. This number of beads produced a complete beam that 

comprised the entire length of the pendulum. The first data point was taken with the period of 

105 beads and 5 beads were removed from the top, leaving a gap in the upper section for the 

next pendulum. This process was continued until 5 beads were left. Then four beads were 

removed so that a single bead remained. 

 The theory based on rigid beads and the experimental values agree to within about 2%. 

The deviations occur at the two extreme regions of the graph.  On the left extreme, the single 

bead in the simple pendulum has a very light mass so that the mass of the string cannot be 



neglected. The right side of the graph incurs deviations due to the flexibility of the beads along 

the string. With many beads, the string of beads must be considered as a hanging chain rather 

than a rigid beam or rod. Similar deviations as shown in figure 4 were obtained with the 

wooden beads and blocks. A detailed discussion of the discrepancies is presented in the next 

section.  

 

Figure 4. The experimental data compared to theory based on a massless string and rigid bead 
arrays. The 2% discrepancy for the simple pendulum arises since the string mass is not 
negligible for one bead. The 2% deviation for 105 beads is due to the flexibility of the beam.  

Explaining the discrepancies at the extremes 

The simple pendulum (one bead) 



 The measured value for the simple pendulum was 1.96 s, which is 2% lower when 

compared to the theoretical 
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1.002 m 0.0048 m = 0.997 ml L r    . The discrepancy is there because the bead is so 

light that the mass of the string cannot be neglected. A single coloured bead has a mass of 

1.26 gm  and the string of length  1 mL   used has a mass  0.31 g  , giving the 

relationship 4m  . When the mass of the string cannot be neglected, one has a stick and ball 

pendulum. The formula for the stick and ball pendulum is [4] 
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With 4m  , equation (13) becomes 
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which shortens the period by the factor 
26

27
.  Therefore, this factor should be applied to the 

theoretical 2.00 s, giving 
26

2.00 1.96 s
27

  , in agreement with experiment. The next data 

point corresponds to 5 beads so that the bead mass now is 20 times that of the string. 

Therefore, agreement is quite good. Experimenting with different types of beads, the 

discrepancy at the simple pendulum end of the graph depends on the relative masses of the 

string and single bead. 

The full beam (all beads) 



 For the systematic deviations appearing at the other extreme, reaching a 2% error for 

the full beam of beads, the error is due to the flexibility of the beam. A flexible beam is better 

described as a hanging chain. Lamb [11] indicates that to obtain the "gravest period" for a 

hanging chain of length l  one must replace the rigid beam result 
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with the formula 
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The period is therefore increased by the factor 
5.225

1.02
5.130

 , which gives the 2% increase 

observed and evident in the graph of figure 4. Karls [12] obtains an increase in period of 2.3% 

measuring the period for a lamp ball chain with small spacings between the beads. The 

discrepancy for the last bead in figure 4 is more precisely 2.4%, matching very well the result of 

Karls. In either case, the error is about 2%, in agreement with the historical formula given by 

Lamb, which can be traced back to D. Bernoulli [11]. Note that as more and more beads are 

removed from the upper portion of the pendulum, the experimental data agrees better with 

the rigid-bead model until there is one bead remaining. Experimenting with different beads, the 

discrepancy at the full chain-of-beads end when compared to the rigid rod prediction is still 2%, 

as predicted by D. Bernoulli. Equation (15), the hanging-chain formula, must then be used 

instead of the rigid-rod formula of equation (14). These equations predict values that deviate by 

2%. 

Conclusion 

The pendulum undergoing small oscillations is an excellent example of simple harmonic motion. 



The pendulum is one of the most basic and popular applications encountered in a textbook 

chapter on oscillations. The experiment provided in this paper presents an opportunity for 

students to explore both the simple pendulum and physical pendulum in a laboratory setting. 

Colourful toy beads and blocks make the lab more attractive to students. Featonby has pointed 

out that toys "can often give an initial stimulus not possessed by the often sterile and remote 

special apparatus we use in the physics laboratory." [13] Beads and blocks are also easily 

viewed as real-world components by the students. 

 By starting with a beam of beads and transitioning to the simple pendulum, students 

can see how one limiting case can transform into another. A video abstract has been prepared 

describing the experiment [14]. The experimental data agrees within about 2% with a 

theoretical model based on rigid-bead arrays. These deviations present an opportunity for 

students to explore the deeper physics involving string mass and the hanging chain described 

earlier in this paper. It is easy for students to notice some vertical wave motion of the bead 

array when the maximum number of beads are used. This observation implies that the beam is 

flexible and similar to a hanging chain. After completing the lab students can turn the beads on 

the string into a necklace or bracelet. 
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